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Abstract

Semantic Textual Similarity (STS) measures the degree of semantic equivalence be-

tween two sentences or phrases. Similarity measures between sentences are required

in a wide variety of NLP applications, such as information retrieval, topic detection,

question answering and automatic text summarisation. Much of the recent work in

Machine Learning-based methods for Semantic Textual Similarity takes place within

the context of STS tasks and workshops, such as the SemEval workshops, framing

the problem as a machine learning task. This thesis primarily investigates the appli-

cation of semantic textual similarity in evaluation of machine translation (MT) and

sets out to answer the following research question: Can semantic textual similarity

help accurately predict the quality of MT output? We therefore focus on integrating

STS into the machine translation quality estimation (MTQE) process, and propose

a novel approach to using STS as a tool to improve evaluation. In order to calculate

STS, we also develop several machine learning based methods which are evaluated

in SemEval competitions. One which provides a trade-off between the accuracy of

the results and its complexity is selected for the experiments reported in the thesis.

Machine Translation Quality Estimation (MTQE) predicts the quality of ma-

chine translation output without the need for a reference translation. This quality

can be defined differently based on the task at hand, be it post-editing, quality

assurance, or system ranking. In an attempt to focus further on the adequacy

and informativeness of translations, we integrate features of semantic similarity into

QuEst, a framework for MTQE feature extraction. By using methods previously
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employed in Semantic Textual Similarity (STS) tasks, we use semantically similar

sentences and their quality scores as features to estimate the quality of machine

translated sentences. Our experiments show that finding semantically similar sen-

tences for some datasets is difficult and time-consuming. Therefore, we opt to start

from the assumption that we already have access to semantically similar sentences.

We test our hypothesis on three different datasets, including one of our own design.

Our results show that this method can improve the prediction of machine translation

quality for semantically similar sentences.

Furthermore, this thesis poses the research question: To what extent does the use

of quality estimation tools affect the efficiency of the translation workflow? To test

our technique in a real-world setting, we design a user study engaging professional

translators in post-editing tasks using MTQE. To assess the translators’ cognitive

load we measure their productivity both in terms of time and effort (keystrokes) in

3 different scenarios: translating from scratch, post-editing without using MTQE,

and post-editing using MTQE. We also investigate the impact of accurate MTQE

versus inaccurate MTQE. We conduct our user study with 4 professional English to

Spanish translators, using a modified version of PET (Post-Editing Tool1) as our

post-editing tool. Our results show that good MTQE information can improve post-

editing efficiency and decrease the cognitive load on translators. We conclude that

MTQE can be an effective tool to pre-emptively assess the quality of MT systems

to avoid underpayments and mistrust by professional translators.

Finally, we explore the impact of STS in other fields of evaluation. We ask

a further research question: Can we expand the applications of Semantic Textual

Similarity for evaluating the quality of automatically simplified text? What about

translation memory matching? In order to answer these questions, we apply the

same STS techniques to evaluate the output of automatically simplified text. As

text simplification is monolingual, we can directly apply the STS tools to the original

1http://www.clg.wlv.ac.uk/projects/PET/
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and simplified sentence pairs. We augment our system with features that detect

fluency and simplicity. We find that our features are strong indicators for quality,

especially in preserving meaning after simplification. On the Shared Task on Quality

Assessment for Text Simplification (QATS), our classification systems ranked second

overall among all participating systems and consistently outperformed the baseline

for all types of quality measures. In the case of translation memory matching, we

find that STS-enhanced methods perform comparatively with Edit Distance (ED)

methods, which remain the most widely used methods for matching and retrieval

today. We conclude that STS-based retrieval can be useful in cases where ED cannot

find a match. However, due to its simplicity and efficiency, ED remains the better

choice for TMs.
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xiii



Chapter 1

Introduction

Since the introduction of statistical machine translation (SMT) in 1990 (Brown

et al., 1990), the field has evolved quickly with MT research evolving from rule-

based models to example based models, statistical models, hybrid models, and more

recently neural models (Han and Wong, 2016). In the context of these advances in

machine translation tools, comparative assessment of the various outputs is a chal-

lenging yet important part of the process. Developers have turned to a variety of

techniques to assess the quality of machine translation output. While many consider

human evaluation to be the best and most reliable judgement in machine translation

evaluation, this method is inefficient and expensive, especially when large corpora

are involved (Bojar et al., 2017). Automatic evaluation metrics have been devel-

oped to estimate MT output quality, but these rely on reference translations and

focus mainly on syntactic and surface similarities, rather than semantic accuracy.

Therefore, machine translation quality estimation (MTQE) and machine learning

techniques have become one of the focuses of MT output evaluation, as they can be

used to measure different aspects of correctness. One aspect of correctness that has

not been subject of enough research is the notion of semantic correctness. While

several tools that measure monolingual similarity have been developed, the extent

to which such tools can help in machine translation evaluation across languages has
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not been fully researched.

This thesis focuses mainly on addressing the question of informativeness and

semantic soundness in machine translation evaluation. Semantic textual similar-

ity (STS) measures the degree to which two sentences are semantically equivalent

(Agirre et al., 2012). Similarity measures between sentences are required in a wide

variety of NLP applications, such as information retrieval (Bhatia et al., 2013),

topic detection, question answering (Mohler et al., 2011) and automatic text sum-

marisation (Aliguliyev, 2009). Much of the recent work in Machine Learning-based

methods for Semantic Textual Similarity takes place within the context of STS

tasks and workshops, such as the SemEval workshops (Agirre et al., 2012, 2013,

2015, 2016), framing the problem as a machine learning task. We make and support

the claim that STS can help determine the degree to which information is preserved

after translation, and the degree to which it is lost. In order to explore that claim,

we start by developing several machine learning based methods which are evaluated

in the SemEval competitions. We then propose a novel approach to integrating

STS into the MTQE pipeline, through the use of semantically similar sentences

with quality scores. We test our hypothesis on three different datasets, including a

dataset which we ourselves designed to fit the purpose. Our results show that this

method can improve the prediction of machine translation quality for semantically

similar sentences. We also test our method in a real-world setting, using professional

translators to act as post-editors and to evaluate the impact that our STS enhanced

MTQE method has on post-editing efficiency. We conclude that MTQE can be an

effective tool to preemptively assess the quality of MT systems. We also extend the

application of the STS tool to the evaluation of automatically simplified text and to

the retrieval of translation memory matching. It shows competitive results in the

evaluation of automatic text simplification, although it does not outperform basic

Edit Distance for translation memory retrieval.
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1.1 Research Questions

Our research focuses on investigating the following research questions:

RQ1 Can semantic textual similarity help accurately predict the quality of MT

output?

RQ2 To what extent does the use of quality estimation tools affect the efficiency of

the translation workflow?

RQ3 Can we expand the applications of Semantic Textual Similarity further:

RQ3.1 in automatic evaluation of simplified text?

RQ3.2 in translation memory matching and retrieval?

RQ1: Semantic Textual Similarity with MTQE

Our first research question explores whether and to what extent semantic data can

be used to improve the MT evaluation process.

RQ1 Can semantic textual similarity help accurately predict the quality of MT

output?

This is our first and most general research question. Previous work on semantic

textual similarity (STS) has focused mainly on monolingual similarity. That is, it is

designed to work best between similar sentences of the same language, rather than

across languages. With that in mind, we take an indirect approach to incorporating

STS into the evaluation process. We attempt to compare our MT output to simi-

lar sentences that themselves may have a reference translation or a predetermined

evaluation rating. By incorporating this information into the quality estimation

pipeline as features, we investigate whether or not STS can be used to determine
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how semantically sound a translation can be. This method introduces several chal-

lenges, as current STS systems can be slow and inaccurate, and searching a vast

corpus of sentences in order to find one that is similar enough to matter can be

time-consuming.

RQ2: MTQE in a Real World Setting

Our second research question concerns the real-world application of such evaluation

methods. One of the main theoretical real-world applications of reference-free eval-

uation is that it can be used as part of the computer assisted machine translation

workflow to speed up the post-editing process. Translators who use machine trans-

lation as an aid during the translation process need to decide whether a sentence

is worth post-editing or is faster translated from scratch. In theory, a good quality

estimation tool could make that decision for the translator and increase their effi-

ciency. However, the extent to which MTQE tools are used in real world translation

settings remains limited. Therefore, we pose the following research question:

RQ2 To what extent does the use of quality estimation tools affect the efficiency of

the translation workflow?

In order to answer this research question, we design a user study to test the effect of

MTQE on post-editors in a professional setting. we design a traffic light system to

present translators with three different categories of sentences and determine how

effective MTQE is at improving the efficiency of the translation workflow.

RQ3: Other Applications of STS as a Tool for Evaluation

Text simplification is the process of transforming a text into another, easier to read

and understand text, while still preserving the same information (Shardlow, 2014).
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This transformation involves the replacement of complex sentences into shorter and

simpler ones, and the lexical replacement of difficult words with their simpler syn-

onyms. The primary objective of text simplification is to make complex texts more

accessible to a wider variety of audiences, such as those with learning disabilities.

Automatic text simplification is a large field of research that spans 20 years, and

seeks to automate this process, making it easier to convert large corpora into a

more readable version. The monolingual nature of automatic text simplification

and the importance of semantic preservation makes STS a logical tool to use for its

evaluation. Therefore, we pose the following the research question:

RQ3 Can we expand the applications of Semantic Textual Similarity further:

RQ3.1 in automatic evaluation of simplified text?

RQ3.2 in translation memory matching and retrieval?

1.2 Roadmap

This thesis takes on the task to answer these questions. We provide the necessary

background work that frames the context of our own experiments and contributions.

The following paragraphs describe the organisation and structure of this report.

Chapter 2 presents a review of the relevant literature and frames our motivation

for this study. We first introduce the concept of STS and its developement from

recognising textual entailment (RTE). We look at a few relevant tools for STS and

provide a snapshot of the history of RTE and STS workshops. We further outline the

evolution of both reference-based and reference-free machine translation evaluation

tools, including the tools used in this research.

Chapter 3 describes the STS systems developed over the course of this research

and the features and tools used in building this system. In this chapter we present
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two systems, submitted to SemEval 2014 and 2015. These systems build on the

research presented in Chapter 2. The first system consists of a total of 31 features

extracted from pre-existing language technology tools, a paraphrasing database,

machine translation evaluation tools and corpus pattern analysis. We then use ma-

chine learning tools to build a supervised regression model to predict the similarity

between two sentences. The 2015 system builds on this work, adding a number

of distributional, conceptual and semantic similarity measures, along with features

based on multiword expressions. Both systems outperformed the baseline system

used by the workshop organisers. The final STS system used in this research is a

streamlined version of these two submissions, optimised for efficiency and perfor-

mance after extensive feature selection, and is comprised of 13 language technology

and paraphrasing features.

Chapter 4 looks at ways to incorporate what we developed in Chapter 3 into the

evaluation process. In this chapter we present a novel approach that uses a previ-

ously evaluated and semantically similar sentence, in order to determine the quality

of a machine translated sentence. We test our method in a series of experiments

on different datasets that investigates the effectiveness of our approach. We also

describe the design of a new dataset, consisting of semantically similar sentences

and their machine translations, with manual evaluations of the translations. While

small, this dataset provides a solid medium in which to test our approach. Overall,

our results showed a consistent improvement in accuracy over a baseline quality

estimation system.

Chapter 5 details the user study we designed to test the impact of our evaluation

system in a real-world setting. The study enlists the work of 4 professional trans-

lators and compares their efforts to post-edit (PE) both with and without MTQE.

It also compares the impact of the use of accurate MTQE to inaccurate MTQE.

For this study, we assembled a dataset of 260 English sentences, their Spanish MT

translations, and their post-edited translations. We divided the sentences into 4 dif-
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ferent categories: sentences without MTQE, sentences with good/accurate MTQE,

sentences with bad/inaccurate MTQE, and sentences to be translated without PE.

The sentences were presented to the translators using a traffic light system with

green telling the user to post-edit, red telling the user to translate from scratch

and blue telling them to make up their own mind. Our results showed that good

MTQE has a positive impact on the efficiency of the translation workflow, and can

cut translating time and effort significantly.

Chapter 6 explores the possibility of further applications of our STS approach

to evaluation. We test our method both in evaluating automatic text simplification

and translation memory matching, due to the monolingual nature of both these

tasks. We apply the same STS techniques to evaluate the output of automatically

simplified text. As text simplification is monolingual, we can directly apply the STS

tools to the original and simplified sentence pairs. However, as semantic similarity

is only one of many aspects of ATS evaluation, we augment our system with features

that detect fluency and simplicity. We find that our features are strong indicators of

quality, especially in preserving meaning after simplification. On the Shared Task

on Quality Assessment for Text Simplification (QATS), our classification systems

ranked second overall among all participating systems and consistently outperformed

the baseline for all types of quality measures. In the case of translation memory

matching, we find that STS-enhanced methods perform comparatively with Edit

Distance (ED) methods, which remain the most widely used methods for matching

and retrieval today. We conclude that STS-based retrieval can be useful in cases

where ED cannot find a match. However, due to its simplicity and efficiency, ED

remains the better choice for TMs.

And finally, Chapter 7 sums up our research to date, outlining the main conclu-

sions and outcomes, in addition to avenues for future research.

7



1.3 Resources and Publications

We present two separate datasets which we created throughout our research:

• FLICKR EN-FR Dataset2: A dataset of semantically similar English sentence

pairs, with an STS score and their manually evaluated French machine trans-

lations.

• Autodesk Real-World Data3: A subset of 260 sentences from Autodesk post-

editing data, divided by accuracy of MTQE.

Several papers were published in peer-reviewed conference proceedings and work-

shops as part of the research presented in this thesis. Our work on STS systems

appeared in publications for the SemEval workshop and were presented as posters

in 2014 (7) and 2015 (6) at the workshops. Our work on integrating STS into the

MTQE pipeline was published in the Proceedings of the 19th Annual Conference of

the European Association for Machine Translation (EAMT) (3). The preliminary

findings on our user study were published in the 2017 edition of The Prague Bulletin

of Mathematical Linguistics (1). The full study is currently under review for the

special issue Advances in Computer-Aided Translation Technology, and at the time

of this writing, awaits reviewer feedback.

A full list of publications from this thesis:

(1) Parra Escart́ın, C., Béchara, H. and Orăsan, C., 2017. Questing for Qual-

ity Estimation: A User Study. The Prague Bulletin of Mathematical

Linguistics, 108(1), pp.343-354.

This paper published the preliminary findings for the User Study presented in Chap-

ter 5. The study itself was designed by all 3 co-authors. The original data was ex-

2https://gist.github.com/hbechara/333c8be2d03515b6b6cc39b4deeeaffc
3http://dinel.org.uk/projects/postediting-dataset/
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tracted and analysed by H. Béchara, and further analysis was provided by the other

two authors. The first author, C. Parra Escart́ın, was in charge of the preparation

of the paper, putting together the text she received from the other authors and her

contribution. The results section and their analysis was written by H. Béchara, who

also carried out the data analysis.

(2) S̆tajner, S., Popovic, M. and Béchara, H., 2016. Quality Estimation for

Text Simplification. In Proceedings of the LREC Workshop on Quality

Assessment for Text Simplification, pp. 15-21.

This paper presents an early version of using QE for the Assessment for Text Sim-

plification. The method itself was suggested by the first author S S̆tajner. The

engineering of the features used in the paper was the joint work of the three au-

thors. The paper was written by the first author, S S̆tajner, with contributions from

the other two authors.

(3) Béchara, H., Parra Escart́ın, C., Orăsan, C. and Specia, L., 2016. Semantic

Textual Similarity in Quality Estimation. In Proceedings of the 19th

Annual Conference of the European Association for Machine Translation (pp.

256-268).

This paper presents the method for integrating STS features into MTQE, laid out

in Chapter 4. The method itself was designed by H. Béchara, and C. Orăsan and

implemented by H. Béchara. The paper describes three different sets of experiments,

designed and carried out by H. Béchara with feedback and suggestions from all

three co-authors. The paper itself was written by H. Béchara with contributions

and feedback from all three co-authors.

(4) Béchara, H., Gupta, R., Tan, L., Orăsan, C., Mitkov, R. and van Genabith,
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J., 2016. Wolvesaar at SemEval-2016 task 1: Replicating the success

of monolingual word alignment and neural embeddings for semantic

textual similarity. In Proceedings of the 10th International Workshop on

Semantic Evaluation (SemEval-2016) (pp. 634-639).

This paper was a joint contribution between the University of Wolverhampton and

the University of Saarland and describes our submission to the SemEval 2016 work-

shop. The system was designed by the first three authors (Béchara, Gupta and

Tan), who also jointly wrote the paper with feedback and input from the rest of the

co-authors.

(5) S̆tajner, S., Béchara, H. and Saggion, H., 2015. A Deeper Exploration

of the Standard PB-SMT Approach to Text Simplification and its

Evaluation. In Proceedings of the 53rd Annual Meeting of the Association

for Computational Linguistics and the 7th International Joint Conference on

Natural Language Processing (Volume 2: Short Papers) (Vol. 2, pp. 823-

828).

This paper describes a series of experiments that examine the result of phrase-based

machine translation tools applied to Text Simplification. It also uses machine trans-

lation metrics to evaluate the output of these tools. The method and experiments

were suggested by the first author (Stajner) and designed and run by the second

author (Béchara). The results were analysed and written up by the first author,

with contributions and feedback from the second and third authors.

(6) Béchara, H., Costa, H., Taslimipoor, S., Gupta, R., Orăsan, C., Pastor, G.C.

and Mitkov, R., 2015.Miniexperts: An SVM Approach for Measuring

Semantic Textual Similarity. In Proceedings of the 9th international

workshop on semantic evaluation (SemEval 2015) (pp. 96-101)
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This paper was our second submission to the SemEval workshop and built on the

system we designed in 2014. The system was designed by the first two authors

(Béchara and Costa) but built on previous work by the fourth author (Gupta).

The third author (Taslimipoor) contributed one of the features used in the model.

The paper was written by the first and second author (Béchara and Costa) with

contributions and feedback by the rest of the co-authors.

(7) Gupta, R., Béchara, H., El Maarouf, I. and Orăsan, C., 2014.UoW: NLP

techniques developed at the University of Wolverhampton for Se-

mantic Similarity and Textual Entailment. In Proceedings of the 8th

International Workshop on Semantic Evaluation (SemEval 2014) (pp. 785-

789).

This paper describes our first submission to the SemEval workshop in 2014. The

model was built on features chosen and tested by the first two authors (Gupta and

Béchara) along with El Maarouf who contributed the CPA features. The models

were trained and run by the first two authors and the paper was written jointly

between them along with contributions and feedback from all the co-authors.

(8) Gupta, R., Béchara, H. and Orăsan, C., 2014. Intelligent translation

memory matching and retrieval metric exploiting linguistic tech-

nology. Proceedings of Translating and the Computer, 36, pp.86-89.

This paper presents some preliminary findings from experiments designed to test

the use of STS form TM matching and retrieval. The experiment was designed and

tested by the first author (Gupta). The second author (Béchara) carried out the

manual evaluation and wrote the part reporting this analysis. The paper itself was

written by the first author (Gupta) with contributions and feedback from all the

co-authors.
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Chapter 2

Background Information

The purpose of this chapter is to provide the background information required for

understanding the thesis and provide an overview of the methods that are used

throughout the thesis. In addition, it provides some historical overview of how the

topics covered in this thesis developed. We will give an overview of the state of

the art in the relevant fields of research and provide context for this thesis. The

literature review is divided as follows: Semantic Textual Similarity (STS) (Section

2.2) and Machine Translation Evaluation (Section 2.3) . Interest in the field of STS

developed partially as a result of the successes obtained in the field of Recognising

Textual Entailment (RTE). For this reason, Section 2.1 gives an overview of RTE

and how research into it evolved into STS. The section on Machine Translation

Evaluation covers both human and automatic evaluation systems, including metrics

and quality estimation. It also provides an overview of the Workshop for Machine

Translation (WMT) shared tasks on Quality Estimation, where much of the state

of the art and the most important frameworks have been developed.

The rest of this chapter is organised as follows. As research into semantic tex-

tual similarity is inextricably linked to textual entailment, Section 2.1 provides an

overview of recognising textual entailment (RTE) and its tasks and challenges. Sec-
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tion 2.2 delves into the history and state of the art of semantic textual similarity,

with a focus on the SemEval shared tasks that provided a medium for most of the

research in this field. Section 2.3 lays out a state of the art of machine translation

evaluation, covering both human and automatic evaluation methods, and discussing

both reference-free and reference-based methods of automatic evaluation. Chapter

2.4 provides some motivation for our work and the design choices made throughout

the thesis. The Chapter ends with our conclusions in Section 2.5.

2.1 Recognising Textual Entailment

Research in STS is closely tied to research into Recognising Textual Entailment

(RTE) tasks (Dagan et al., 2010). Therefore, to glean a full understanding of the

history of STS, we have to begin with RTE.

RTE recognises whether the meaning of a text can be inferred (entailed) from

another. In other words, a text A is said to entail a text B when the meaning of B can

be inferred from the meaning of A. This means that entailment is a unidirectional

relation. As discussed later, this differs from STS, which is bidirectional. Example

(1), taken from Sammons et al. (2011), demonstrates a text and three hypothetical

entailments.

(1) The purchase of Houston-based LexCorp by BMI for $2 Billion prompted

widespread sell-offs by traders as they sought to minimize exposure. LexCorp

had been an employee-owned concern since 2008.

a. Hyp 1: BMI acquired an American company.

b. Hyp 2: BMI bought employee-owned LexCorp for $2 Billion

c. Hyp 3: BMI is an employee-owned concern

De Marneffe et al. (2008) expand the definition of entailment to include a third op-
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tion: contradiction. A sentence “A” contradicts a sentence “B” when both sentences

are highly unlikely to be true at the same time. The authors introduce a three-way

classification system that labels sentences as either Entailed, Contradicted or Un-

known. In Example (2), Hyp 2 contradicts the original text, as LexCorp could not

have been bought by BMI and remain employee-owned. De Marneffe et al. (2008)

posit that while contradictions can arise from obvious features such as antonymy,

negation and numeric mismatches, they can also arise from more complex structures

and are therefore more difficult to determine than entailment. This is demonstrated

in the example in Example (2) below, where Hyp 1 neither follows nor necessarily

contradicts the text, as the 100 people could still have been injured regardless of the

rocket’s defusing.

(2) Police specializing in explosives defused the rockets. Some 100 people were

working inside the plant.

a. Hyp 1: 100 people were injured.

The task of RTE is a less complex problem than that of semantic similarity, yet its

appeal remains broad due to its uses in various other NLP applications from Au-

tomatic Question Answering (Harabagiu and Hickl, 2006), to Machine Translation

(Mirkin et al., 2009) and Information Retrieval (Clinchant et al., 2006). In automatic

question answering, RTE can be used to rerank sentences or eliminate sentences that

do not meet the basic requirements of entailment. Harabagiu and Hickl (2006) show

that such methods increase the accuracy of question-answering by as much as 20%.

In SMT, RTE has been applied to solve the problem of unknown words, where the

SMT system fails to translate a word it has not previously encountered. Mirkin et al.

(2009) address this by paraphrasing the sentences prior to translation, using both

a paraphrase database and entailed texts to generate multiple alternatives to the

original sentence. A manual evaluation showed a strong preference for the system

that used entailment for paraphrasing, by human evaluations. RTE models have
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also been used in Information Retrieval, where the entailment can be used to cap-

ture dependencies between query and documents which are not captured by simple

word-based similarities.

2.1.1 A History of the RTE Challenge

Research in the field of textual entailment benefited greatly from the RTE challenge.

Dagan et al. (2005) introduced the RTE challenge as an application-independent task

that asks participants to label a pair of sentences with True if one sentence entails

the other and False if it does not. The RTE task dedicated itself to the problem of

RTE, setting the baseline and benchmark for RTE systems and providing common

grounds for researchers to share and compare their work. The shared task provided

the participants with an annotated dataset of small text snippets from the news

domain. The dataset was collected and then labelled by human annotators, within

different application settings such as Information Retrieval, Question Answering,

Paraphrase Acquisition and others. The human annotators selected 50% of the

sentence pairs for entailment and the other 50% for contradiction. Examples (3)

and (4) below are taken from the data description in Dagan et al. (2005).

(3) Question Answering Subtask

a. Text: The Republic of Yemen is an Arab, Islamic and independent

sovereign state whose integrity is inviolable, and no part of which may

be ceded

b. Hypothesis: The national language of Yemen is Arabic.

c. Value: True

(4) Information Extraction Subtask

a. Text: Regan attended a ceremony in Washington to commemorate the

landings in Normandy.
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b. Hypothesis: Washington is located Normandy.

c. Value: False

Participants were provided with a training set and a development set for tuning.

Participants were to treat the task as a classification problem and provide an au-

tomatic label (and an optional confidence score) for each sentence pair. Sixteen

systems were submitted that covered a large range of approaches, ranging from very

basic word-overlap systems to statistical methods. Overall, the system accuracies

were between 60 and 70 percent, and made the first step into identifying textual

entailment as its own discipline with NLP.

Since then there have been promising improvements in RTE with different re-

searchers providing different approaches to the problem. The following year, the

challenge provided a larger and more “realistic” dataset, with 800 sentence pairs for

developement and another 800 for testing (Bar-Haim et al., 2006). It also added a

subtask, which asked the participants to rank the entailed sentences by confidence.

This challenge saw more participants, with 23 submissions and results ranging be-

tween 53% and 75% accuracy. The highest performing system uses a classication-

based approach to combine lexico-semantic information derived from text processing

applications with a large collection of paraphrases acquired automatically from the

web (Hickl et al., 2006). Bos and Markert (2006) presented their contribution to

the RTE task, comparing and combining a shallow semantic method with a method

based on logical inference. The first method used a bag-of-words approach to mea-

sure word overlap. The deeper semantic analysis made use of two kinds of automatic

reasoning tools: first order theorem proving and finite model building, resulting in

a set of features that they hoped would show where a sentence “A” entails a sen-

tence “B”. At first glance, adding the deeper analysis did not improve over shallow

features. The system achieved a best run of 60.1% accuracy.

The third RTE challenge followed closely in the footsteps of the 2006 challenge,
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but introduced longer texts into the dataset (Giampiccolo et al., 2007). Most no-

tably, this task piloted a third option, UNKNOWN, to the entailment task, for

situations where a hypothesis sentence neither entails nor contradicts the text. 26

teams participated, with the overall accuracies of systems between 35% and 73%.

Once again, the best performing system, (Hickl and Bensley, 2007), used a statistical

model for commitment extraction, lexical alignment, and entailment classification.

The fourth challenge incorporated the previous pilot task into its main task,

now using a three-way classification system (ENTAILS, CONTRADICTS, UN-

KNOWN) in the main task (Giampiccolo et al., 2008). However, a second two-way

task was also created by automatically converting the labels CONTRADICTS and

UNKNOWN into NO ENTAILMENT. Twenty-six teams participated in that

year’s challenge. The average accuracies of the systems were 58% for the two-way

system and 30.7% for the three-way system. The highest reported accuracy was

74.6% for the two-way system.

The fifth challenge added a new task, the search task, which consisted of search-

ing a corpus for all the sentences that entailed a given text (Bentivogli et al., 2009).

This new task became the focus of the last two RTE challenges, shifting from recog-

nising textual entailment to retrieving entailing sentences. This was the last chal-

lenge dedicated specifically to RTE. However, the classical RTE recognition task

continued with other workshops, such as the SemEval workshops (further described

in Section 2.2.3) which often included a Textual Entailment (TE) component or

subtask.

2.2 Semantic Textual Similarity

STS is defined by Agirre et al. (2012) on page 1 as a “measure that captures the

notion that some texts are more similar than others”. STS measures this degree of
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semantic similarity which can range from completely unrelated to exact semantic

equivalence. The concept of STS builds on RTE in the sense that both measure

and compare texts on a semantic level. While TE only needs to hold true in one

direction, STS assumes the similarity relationship between the two snippets of text

is bi-directional. Furthermore, TE is binary: A sentence can either entail another,

or not. On the other hand, STS can be graded on a scale, depending on how much

the texts differ.

STS has applications in several fields of research. One such application is in

the field of text summarisation. Text summarisation is the automatic creation of

shorter texts from longer texts or a collection of longer texts, while still preserving

the meaning of the original text. Graph-based summarisation relies on similarity

measures in its edge weighting mechanism (Aliguliyev, 2009). Information retrieval

(IR) is the process of extracting related information from large collections of infor-

mation resources, and presenting it according to a user’s need (Bhatia et al., 2013).

In IR, similarity measures are used to assign a ranking score between a query and

texts in a corpus. Question Answering (QA) is a specific type of information re-

trieval where a system tries to find the correct answer to a given question. Question

answering applications require similarity identification between a question-answer

or question-question pair (Mohler et al., 2011).

2.2.1 Semantic Similarity in Human Translation Studies

Semantic similarity is a well-studied and complex problem in human translation

studies. Human linguists identify two main fields of semantics: logical semantics,

which deal with sense, reference and implication, and lexical semantics, concerned

with word and phrase meanings, and the relationship between them. Our research

focuses mostly on determining lexical semantics, both on a word and phrase level.

This is itself not a simple task, as there is no one-to-one relationship between or-
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thographic words and elements of meaning (Baker, 2011). Furthermore, according

to Cruse et al. (1986), there are four main types of meanings in words:

• Propositional Meaning: The relation between a word and what it represents

in the world. This is the type of meaning that we use when we speak of

equivalence and correctness.

• Expressive Meaning: Relates to feeling and attitude around words and phrases.

We do not take this meaning into account when measuring semantic similarity,

as it is highly contextual and cannot be judged as true or false.

• Presupposed Meaning: Relies on co-occurrence restrictions and deals with

expected meaning and collocational restrictions. This includes figurative lan-

guage, idioms and restrictions that are highly language-dependent.

• Evoked Meaning: Which arises from dialect and register, and can fall into

geographical, temporal or social categories.

In particular, we are mostly interested in propositional semantics as the most

straightforward measure of semantics between written texts, and the only one that

really deals with an objective semantic value. Therefore, when we speak of similarity

and correctness in this thesis, we generally are referring to propositional similarity

and correctness. As we concern ourselves with sentence-level semantic similarity, we

are interested in word-level and phrase-level. Therefore, we do not deal with text

cohesion and coherence, pragmatic similarity, ethics or other larger picture concepts

of similarity. While these are important aspects of correctness and similarity, they

are beyond the scope of this research.

The automatic methods to determine semantic similarity used in computational

linguistics (and by extension this research) are very often highly data driven. There-

fore, research in computational linguistics quite often fails to address theories pro-

posed by linguists. For the most part, the methods are quite shallow by comparison
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and focus on learning from data rather than theory. For this reason this discussion

is beyond the scope of this thesis.

2.2.2 Early Research into Semantic Textual Similarity

One of the earlier methods for measuring semantic textual similarity is presented

by Mihalcea et al. (2006), notable in that it was the first of its kind to focus on

short texts rather than individual words or full documents. Their approach used

a combination of corpus-based and knowledge-based measures. Corpus-based mea-

sures attempt to model the similarity between words by using information from very

large corpora and measuring co-occurrence to determine a dependency between two

words. Knowledge-based measures, on the other hand, use semantic networks to

quantify the degree to which two words are related. The authors test the effective-

ness of their method on paraphrased sentences from the Microsoft paraphrase corpus

(Dolan et al., 2004). They used 4,076 sentences for training and 1,725 for testing.

They report an overall final accuracy of 70.3%, compared to an 83% accuracy when

using human evaluators. Overall, the system improved dramatically over traditional

vector-based methods.

Another early foray into semantic textual similarity for short texts comes from

Gabrilovich and Markovitch (2007), who use machine learning techniques to rep-

resent the meaning of any text as a weighted vector of Wikipedia-based concepts.

They call their approach ESA (Explicit Semantic Analysis). In their approach, texts

are represented by weighted vectors of concepts that are compared using the cosine

metric. This is similar to the work presented by Mihalcea et al. (2006) in that both

approaches manipulate a collection of concepts. However, where the previous ap-

proach compares the degree of relatedness between words, this approach treats words

and texts the same way, leading to a higher degree of word sense disambiguation as

words always appear in context. Their results show vast improvements over previous
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methods, with 0.75 correlation with human judgements, slightly outperforming the

system previously proposed by Mihalcea et al. (2006).

2.2.3 The SemEval Shared Tasks

Much of the recent work in Machine Learning-based methods for Semantic Textual

Similarity takes place within the context of STS tasks and workshops, such the

SemEval workshop, framing the problem as a machine learning task. SemEval’s

shared tasks have been particularly interested in semantic similarity, working to

fine-tune and perfect these similarity measures, and explore the nature of meaning

in language. These models compare a pair of texts and provide a score that measures

similarity based on a scale from 1-5, as defined in Table 2.1.

What follows is a short overview of each of the SemEval workshops involving STS

since its inception, and the best systems in each workshop.

SemEval-2012 Task 6: A Pilot on Semantic Textual Similarity

A shared task for determining semantic textual similarity first took place at the

workshop for semantic evaluation (SemEval) in 2012, as SemEval-2012 Task 6: A

Pilot on Semantic Textual Similarity.

The instructions for the task, given by Agirre et al. (2012), were as follows:

Given two sentences, s1 and s2, participants will quantifiably inform us on how

similar s1 and s2 are, resulting in a similarity score. Participants will also provide

a confidence score indicating their confidence level for the result returned for each

pair. Participants will be asked to explicitly characterize why a pair is considered

similar, i.e. which semantic component(s) contributed to the similarity score.

For this task, the organisers assembled 3 datasets from different sources.
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Table 2.1: Semantic Textual Similarity scale used by SemEval

1 The two sentences are on different topics

“A man is jumping into an empty pool.”

“There is no biker jumping in the air.”

2 The two sentences are not equivalent, but share some details

“Two children are lying in the snow and are making snow angels.”

“Two angels are making snow on the lying children.”

3 The two sentences are roughly equivalent, but some important

information differs/is missing

“The young boys are playing outdoors and the man is smiling nearby.”

“There is no boy playing outdoors and there is no man smiling”

4 The two sentences are mostly equivalent, but some

unimportant differs/missing

“Four girls are doing backbends and playing in the garden”

“Four girls are doing backbends and playing outdoors”

5 The two sentences are completely equivalent

“The current is being ridden by a group of friends in a raft.”

“A group of friends are riding the current in a raft”

• MSRPar: Sampled from the Microsoft Research Paraphrase Database (Dolan

et al., 2004) at certain ranks of string similarity. 1500 sentences overall (divided

into 50% for training and 50% for testing)

• MSVid: Sampled from the MSR Video Paraphrase Corpus (Chen and Dolan,

2011), a corpus assembled by showing annotators videos and asking them to

write a short sentence describing the video. 1500 sentences overall (divided

into 50% for training and 50% for testing)

• Pairs from the translation shared task of the 2007 and 2008 ACL Workshops

on Statistical Machine Translation (WMT) (Callison-Burch et al., 2007, 2008)
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matched with their machine translations. 1830 sentences in total from different

domains.

In total, 35 teams participated and submitted 88 runs. The output of the participant

systems was compared to manual scores, using a Pearson Correlation Coefficient

and Mean Square Error. The baseline to beat was a simple word overlap system.

The Pearson Correlation Coefficient is defined as the ratio of the covariance of two

variables representing a set of numerical data, normalised to the square root of their

variances, as shown in Equation 2.1.

PXY =
Cov(X, Y )√

Var(X)Var(Y )
(2.1)

Mean Squared Error (MSE) is calculated as the mean of the squares of difference

between the predicted and observed results, as demonstrated in Equation 2.2.

MSE =
1

n

n∑
i=1

(Xi − Yi)2 (2.2)

where Y is the vector of predictions and X is the vector of observed values.

The top performing systems in this task achieved a mean correlation of 0.677

and 0.675 respectively. The best system, submitted by Bär et al. (2012) uses a log-

linear regression model, combining various text similarity measures ranging from

simple n-grams matches to complex Explicit Semantic Analysis vector comparisons

and aggregation of word similarity based on lexical-semantic resources. This system

achieved an overall correlation of 0.677, versus a baseline of 0.31.

TakeLab4, the second best system submitted by Šarić et al. (2012), follows a

set-up similar to that described in Bär et al. (2012). In contrast, the authors use a

4http://takelab.fer.hr/sts/
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support vector regression model to predict semantic similarity, and employ multiple

features measuring word overlap and syntax similarity. This system performed par-

ticularly well on paraphrasing datasets, and achieved a correlation of 0.675. TakeLab

is still used as a baseline for many STS tasks today.

In their submission to the same workshop, Jimenez et al. (2012) present an

approach to text similarity using what they call “soft cardinality”. Soft cardinality

takes into account commonalities and differences between sets and weighs them

accordingly. By using a set-based weighted soft-similarity method, they compare

sentences, words and characters using surface information. They ranked third among

89 systems, achieving a score of 0.6071. The overall average Pearson score for all

systems was 0.56.

The 2012 workshop served as a pilot and their submissions set the stage for future

tasks as well as the benchmark for further systems to beat. Future workshops would

build on the data and evaluation system used in this task.

SemEval 2013 Task 6: Semantic Textual Similarity

Following the success of the pilot study, the STS shared task continued the following

year at SemEval2013, also as Task 6: Semantic Textual Similarity (Agirre et al.,

2013). The task description was unchanged, and the same datasets from 2012 were

used but augmented with newswire headlines and additional MT sentences. That

year also introduced a second subtask that attempted to ask why two sentences

were deemed similar. The total number of teams that year was 34, with 89 runs

submitted overall. The baseline ranked at 73 out of 89 runs, with a mean correlation

of 0.364.

The best performance was the submission by Han et al. (2013), who described a

new feature for semantic similarity based on distributional similarity and WordNet
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path similarity. Their method used WordNet synsets and hypernyms to find rela-

tionships between words. They submitted 3 separate runs, which ranked first, second

and fourth, with Pearson scores of 0.618, 0.593 and 0.568 respectively. Wu et al.

(2013) explored three semantic representations: named entities, semantic vectors,

and structured vectorial semantics, and combined them with then-current state-of-

the-art features. Using a feature-selection algorithm, they chose the most effective

features and improved the existing systems. Their system scored fifth, sixth and

eighth among the 89 runs, with Pearson scores of 0.567, 0.564 and 0.557 respec-

tively.

SemEval 2014 Task 1: Evaluation of compositional distributional seman-

tic models on full sentences through semantic relatedness and textual

entailment

In SemEval 2014, the STS shared task returned under the description: “Evaluation

of compositional distributional semantic models on full sentences through semantic

relatedness and textual entailment” (Marelli et al., 2014a). This task included two

subtasks, one calling for semantic similarity and one calling for textual entailment.

This is the first time that textual entailment was included in the STS task.

This time organisers used the SICK dataset (Marelli et al., 2014b), annotated

for both similarity and entailment. More details about this dataset are presented

in Section 3.2.1. Sixteen teams participated in both subtasks. On the STS sub-

task, the systems scored between 0.47 and TE subtask, the accuracy was between

48% and 84%. The organisers drew a distinction between compositional and non-

compositional features for this task, and found that compositional features’ perfor-

mance were comparable with the average results obtained in the task.

The top performing system, further detailed in Zhao et al. (2014), attempted

to solve both tasks at once by treating STS as a regression problem and RTE
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as a classification problem, and using the same set of features for both problems.

They extracted seven different categories of features: features focusing on the length

of segments, surface similarity features, semantic similarity features that captured

contextual data, grammatical dependencies, string features (such as n-gram match-

ings and world overlap), text difference measures, which looked at negations and

antonyms, and corpus-based features (which looked at co-occurrences). This system

achieved a mean Pearson score of 0.828. A close second, with a Pearson score of

0.827, was the system presented in Bjerva et al. (2014). This system also took a

supervised approach with a variety of features, ranging from simple word-overlap,

to more complex deep semantic features and features derived from a compositional

distributional semantic model. Our own submission to this workshop is fully de-

tailed in Section 3.2. It ranked 10th with a Pearson score of 0.71 on similarity and

8th on entailment, with an accuracy of 78.5% (Gupta et al., 2014).

SemEval 2015 Task 2: Semantic Textual Similarity

In 2015, the STS shared task returned as Task 2: Semantic Textual Similarity. This

time the shared task involved 3 subtasks (Agirre et al., 2015):

• Subtask 1: English STS

• Subtask 2: Spanish STS

• Subtask 3: A pilot subtask on interpretable STS. An attempt to add an ex-

planatory layer to the similarity score.

The organisers did not create a new dataset for training, opting instead to use

training data from previous workshops. For testing, however, the workshop organis-

ers put together samples from 5 different texts, resulting in the following categories

of test data:
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(1) Image description (image): This subset is derived from Flickr dataset (Rashtchian

et al., 2010). It consists of images from Flickr, depicting actions and events of

people or animals, with five captions per image.

(2) News Headlines (headlines): Derived from headlines mined from several news

sources by European Media Monitor5.

(3) Student answers paired with reference answers (answers-students) derived from

the BEETLE corpus (Dzikovska et al., 2010),

(4) Answers to questions posted in stack exchange forums (answers-forum), de-

rived by pairing answers to the same questions or different questions.

(5) English discussion forum data exhibiting committed belief (belief), collected

from DEFT Committed Belief Annotation dataset

A small subset of the test set, along with its gold standard scores, was also released

as trial data.

The English subtask in particular attracted 29 teams who submitted 74 runs

overall. The baseline system had a 0.69 mean Pearson score, whereas the best

ranked system scored a mean Pearson score of 0.8 across all the different test sets.

The highest ranking system was a supervised machine learning system which used

word alignments and similarities between sentences as features (Sultan et al., 2015).

The second best system had a Pearson correlation of 0.794 and was submitted by

Hänig et al. (2015). Similarly to the best system, it used a combination of word

alignments and string-based features with a support vector regressor to measure

similarity. Our contribution to the shared task achieved a score of 0.721 and is

further described in Section 3.3 (Béchara et al., 2015).

A Spanish subtask was also included. This subtask attracted 7 participants with

16 overall runs, 67% of which outperformed the baseline. The final subtask, on

5http://emm.newsexplorer.eu/NewsExplorer/home/en/latest.html
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interpretable STS, asked participants to include an explanatory layer. These tasks

were not relevant to this thesis.

SemEval 2016 Task 1: Semantic Textual Similarity

The STS task was part of SemEval 2016’s Task 1: Semantic Textual Similarity,

Monolingual and Cross-Lingual Evaluation (Agirre et al., 2016). Here the organisers

included cross-lingual STS for the first time, using Spanish and English sentence

pairs. This task had 2 subtasks:

• Subtask 1: English STS

• Subtask 2: Cross-lingual Subtask (English–Spanish)

Meanwhile, the pilot subtask introduced in 2015 became its own task (Task 2: In-

terpretable Semantic Textual Similarity).

All datasets released during prior STS evaluations were available as trial and

training data. The new test data was collected from a diverse set of sources:

• The newswire headlines collected from Europe Media Monitor (Best et al.,

2005)

• Sentences collected from the Corpus of Plagiarised Short Answers (Clough and

Stevenson, 2011)

• MT translations of news data and their post-edited counterparts from the

EAMT 2011 corpus (Specia, 2011)

• Question-question and answer-answer evaluation sets extracted from the Stack

Exchange Data Dump (Stack Exchange, Inc., 2016).
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The English subtask attracted 43 participating teams with a total of 119 submit-

ted runs. The best overall performance was by Samsung Poland NLP Team’s EN1

system, with an overall Pearson correlation of 0.778 (Rychalska et al., 2016). This

system stresses the importance of a diverse set of features and methods to capture

semantic similarity. In addition to using similarity features with an SVM classifier,

the authors further augment their scores with those produced by a bi-directional

Gated Recurrent Neural Network and additional features. The primary limitation

of their system, however, is its heavy reliance on word order, which makes its per-

formance situational. That did not stop it from outperforming all the other systems

submitted to the shared task. The second best system, UWB, achieved a Pearson

correlation score of 0.757 (Brychćın and Svoboda, 2016). UWB built a SVM re-

gression model with a variety of features based on lexical, syntactic, and semantic

information. Comparatively, the baseline system, based on a simple vector repre-

sentation, achieved an overall Pearson score of 0.511. We submitted a system that

builds on our previous work and expands it to use word embeddings and dense vec-

tor space LSTM based sentence representations (Béchara et al., 2016). Our system

outperformed the baseline and ranked 22 out of 43 participating systems with an

overall Pearson correlation of 0.694.

This year’s workshop also saw the introduction of a cross-lingual subtask, using

English–Spanish sentence pairs rather than the usual monolingual sentence pairs of

previous tasks. The datasets were generated using previous STS annotations from

the datasets from previous years, with one sentence in each sentence pair translated

into Spanish by human translators.

SemEval 2017

At the time of writing of this thesis, SemEval 2017 is the last workshop to offer

the classical STS shared task. In 2017, Task 1 included cross-lingual and monolin-
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gual pairs: (Arabic-English, Spanish-English, Arabic-Arabic, English-English and

Spanish-Spanish), and urged its participants to focus on systems that could partic-

ipate in more than one pairing (Cer et al., 2017). Organisers put together a new

dataset for evaluation, combined from the Stanford Natural Language Inference

(SNLI) (Bowman et al., 2015) and data from the WMT 2014 quality estimation

track (Bojar et al., 2014). The task saw strong participation with 31 teams (84

submissions), of which 17 participated in all tracks. The top performing system was

ECNU (Tian et al., 2017), a universal model for STS, that translates non-English

sentences into English (using MT) and then determines their semantic similarity.

The authors use a combination of traditional NLP methods and deep learning to

determine the STS scores. Their traditional NLP methods follow those of previous

models in extracting a set of effective features and then using supervised machine

learning regressors to predict the STS score. However, they also use neural network

methods with distributional representations of sentences in order to obtain separate

similarity scores. The final scores (73.16) are obtained by averaging both scores, and

outperformed the baseline system (53.7). In second place, with an overall score of

67.89, is BIT (Wu et al., 2017), a system which primarily uses sentence information

content (IC) informed by WordNet and BNC word frequencies.

Between 2012 and 2017, SemEval and its shared task on STS has been pioneering

research in the field, providing a venue for the evaluation of state-of-the-art methods

and algorithms. The workshop has provided STS datasets which researchers can

use for testing and comparison. The availability of these datasets enabled other

researchers to develop STS systems independently from the evaluation conferences.

Recent years have seen a shift to Deep Learning methods (Ramaprabha et al., 2018).

The systems submitted to the shared task have been among the most cutting edge

in the field, and have provided an essential contribution to the research presented

in this thesis.
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2.3 Machine Translation Evaluation

As machine translations become more wide-spread, the need to evaluate these sys-

tems and the quality of their output becomes more and more important. The evalu-

ation of MT output is a highly complex task, due to the ambiguous nature of natural

language and the vast differences in how these languages express concepts (Han and

Wong, 2016). Developers rely on a variety of techniques to assess the quality of

machine translation output. Human evaluation, while in theory reliable and able

to give the best view of the system’s performance, is also costly, time-consuming,

and inconsistent due to the subjectivity of human judgement. This renders it inef-

ficient in the context of larger corpora. In light of these short-comings, automatic

evaluation tools have been developed to estimate the quality, defined in the broad

sense, of MT output. Automatic evaluation metrics assess MT translation systems

without relying on the costly and often unreliable judgement of human evaluators.

Automatic evaluation metrics can be divided into two subgroups: reference-based

evaluation metrics, which rely on one or more reference translations (usually pro-

vided by human translators) to produce MT output, and reference-free evaluation

metrics, which rely solely on the source and hypothesis translation for assessment.

In the rest of this section we cover an overview of evaluation techniques both

manual and automatic. We detail the recent developments in both reference-based

and reference-free evaluation techniques and assess their correlation with human

judgement, their reliability, and their short-comings.

2.3.1 Human Evaluation

Human evaluation is based on the manual scoring of machine translation output,

taking into account two aspects of correctness: fluency and adequacy. Fluency

measures the readability and understandability, while adequacy concerns itself with
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whether or not the translated sentence conveys the original sentence’s meaning.

Evaluators, or judges, are usually asked to assess each sentence with two separate

ranks between 1–5, one for fluency and one for adequacy, usually along a scale such

as the one presented in Table 2.2 (Koehn and Monz, 2006). These human-produced

measures reflect the usability and appropriateness of MT output. More often than

not, these judgements are used to compare systems to each other rather than rate a

system on its own. Therefore, it is much more common for judges to rank a number

of systems.

Table 2.2: Commonly used evaluation scale for human judges

Adequacy Fluency

5 All Meaning Flawless

4 Most Meaning Good

3 Much Meaning Non-native

2 Little Meaning Disfluent

1 None Incomprehensible

In Vilar et al. (2006), the authors manually analyse statistical machine translation

output in order to identify the system’s main errors and present a classification

framework of these errors. Using the output of the RWTH Statistical Machine

Translation system (Vilar et al., 2005), the authors classify the errors into five main

categories:

• Missing Words: When a word in the generated translation is missing. This

category is further subdivided into essential and non-essential words. Essential

words will usually alter the meaning of sentences.

• Word Order: When words or phrases appear in the wrong order in the

generated translation. This category is divided into short-range and long-

range order.
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• Incorrect Words: Usually the largest of the categories. Incorrect words can

be words for which the system chooses the incorrect translation or for which

the system failed to disambiguate a word correctly. It also applies to the

wrong form or inflection of words, bad stylistic choices or literally translated

idiomatic expressions.

• Unknown Words: These are words for which the system cannot find a trans-

lation at all, or when the system does not recognise characters.

• Punctuation: These are minor punctuation errors.

The error categories need not be mutually exclusive, and one error can have more

than one category assigned to it. The full error taxonomy, presented in Vilar et al.

(2005), has been used by many other researchers to date. While exhaustive, this

kind of error topography can be difficult to use consistently. Bojar (2011) use a

version of this topography to evaluate English-Czech machine translation, using 18

native speakers of Czech. The authors found inter-annotator agreement of only 39%.

They attribute this low agreement to two factors: First, the annotators disagree on

what the ideal target should be, and second they disagree on what edits need to be

made to reach that ideal target.

Another common method for human assessment utilises post-editing. This is

usually done by comparing the raw translation to its final post-edited product. This

is even more time-consuming than the ranking system proposed earlier, and is highly

dependent on the evaluator’s skill and judgement. Such is the case of the human

translation error rate metric (Hter) (Snover et al., 2006). Hter measures the

minimum number of edits (insertions, deletions, substitutions and shifts) required to

make the translation acceptable. The minimum number of edits is itself determined

automatically, much like the automatic metrics we will address in Section 2.3.2. In

that sense, Hter is a hybrid metric, utilising both automatic methods and human

input. As the human input needs to be provided after translation, however, we have
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chosen to include Hter under human evaluation.

Crowdsourcing is another type of manual evaluation that attempts to address

the cost and time problem that it faces. Crowdsourcing involves using users on the

Web (often anonymous) to evaluate or rank sentences the way a professional would.

Unlike professionals, however, crowdsourcing is low-cost and quicker. However, un-

like with professional translators, the quality of evaluators and their familiarity with

the domain is not guaranteed. The anonymity of the Web also leads to problems

with spammers. Despite these shortcomings, researchers have shown that agree-

ment rates for crowd-sourced non-experts are comparable to those of professionals

(Zaidan and Callison-Burch, 2011). Furthermore, crowd-based system ranking has

a very strong correlation with expert-based ranking (Bentivogli et al., 2011; Goto

et al., 2014).

However, human evaluation comes with its own set of problems. To begin with,

it is much more time-consuming than automatic metrics. Furthermore, its results

are subjective and biases among human judges call for a variety of normalisation

methods before the numbers are usable. Agreement between annotators is frequently

found to be low when it comes to machine translation evaluation (Callison-Burch

et al., 2008), with kappa figures reported as low as 0.25 for adequacy. Despite this,

when done properly this type of evaluation has the potential to be the most reliable

type of evaluation, as it allows a much more fine-grained analysis than most metrics,

and opens up the possibility of error analysis. Furthermore, automatic metrics are

often found not to reflect translation quality as perceived by humans, as will be

made evident in the next two sections.

2.3.2 Reference-Based Evaluation Metrics

Reference-based evaluation metrics compare MT output to a reference translation,

which is a translation provided by a human and considered to be a “gold stan-
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dard” translation. The assumption is that the score returned would mimic human

judgement, as the closer the output is to the human “gold standard”, the higher its

quality. At times, several translations of the same text are used to account for the

fact that the same text can be translated in different ways.

Bleu (Papineni et al., 2002) is a popular and widely used score for MT eval-

uation that relies on n-gram overlapping to approximate human judgements, and

is currently the most used metric to evaluate machine translation systems. Bleu

matches n-grams between the MT output and the reference translation, using n-

gram precision with a brevity penalty as the score, as demonstrated in Equation

2.3.

Bleu(n) =
n∏
1

PRECi

1
n · bp (2.3)

where n is the order of n-gram, PRECi is the i-gram precision and bp is the brevity

penalty. The brevity penalty, defined in Equation 2.4, is added to stop shorter

sentences receiving too high a score:

bp = exp(max(
len(Ref)

len(Out)
− 1, 0)) (2.4)

where len(Ref) is the length of the reference and len(Out) is the length of the

output. To account for language variability, Bleu normally makes use of multiple

reference translations.

Criticisms of Bleu and n-gram matching metrics in general are addressed by

Callison-Burch et al. (2008), who show that Bleu fails to correlate to (and even

contradicts) human judgement. Bleu is very sensitive to small changes in the

output, and fails to capture linguistic variations, especially in the case where only

one reference translation is being used. Furthermore, metrics such as Bleu are

specifically designed for system or corpus-level assessment, and do not fare well

when evaluating quality on a sentence-level. Several smoothing techniques have

been proposed to make Bleu, work at a sentence level (Lin and Och, 2004). Despite
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criticisms, Bleu remains the most widely-used used automated metric, as it is

efficient, inexpensive, and easy to use.

Other n-gram lexical metrics include Nist, which uses the arithmetic mean in-

stead. Nist is specifically designed to improve on Bleu, and is based on Bleu.

In order to prevent the inflation of SMT evaluation scores, it focuses on common

words and high confidence translations, Nist weights n-grams based on their rarity.

Unlike Bleu, shorter sentences do not impact Nist scores as dramatically. Nist

has been shown to outperform Bleu specifically in the case of Chinese translations

(Doddington, 2002).

Further reference-based evaluation metrics rely on edit distance rather than n-

gram overlap. Su et al. (1992) introduce Word Error Rate (wer), a metric that

determines the editing that a human post-editor would have to perform to change a

system output so it matches the given reference translation. This metric is defined

by Equation 2.5.

Wer =
#INS + #DEL+ #MOD

len(Ref)
(2.5)

Where INS, DEL and MOD represent the number of insertions, deletions and sub-

stitutions required to make the output identical to the given reference translation.

Criticisms of wer point to its inadequacy in taking word order into account. Ter

(Snover et al., 2006) addresses this weakness, however. Ter is another edit distance

metric that is defined in Equation 2.6:

Ter =
#INS + #DEL+ #MOD + #SHIFT

len(Ref)
(2.6)

where SHIFT represents the number of sequence shifts required.

Ter is similar to HTer (c.f. Section2.3.1), but it uses a reference translation
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instead of requiring human input to post-edit. Snover et al. (2006) show that a

single-reference variant Ter performs as well as a four-reference variant of Bleu,

and that human-targeted Ter correlates better with human judgements than its

n-gram based counterparts.

Like n-gram based metrics, edit-distance metrics face serious limitations in that

they rely heavily on reference translations, limiting their flexibility. If an automatic

translation fails to match a given reference translation, it will be penalised by the

metric even if it is a fully fluent and adequate translation. While multiple references

mitigate this problem somewhat, it is practically impossible to cover every single

possible translation for a given input.

The previously mentioned metrics make relatively few attempts account for se-

mantic information for MT evaluation. Meteor (Banerjee and Lavie, 2005) rectifies

this short-coming by matching unigrams based on more than just the overlap be-

tween the words presented in the n-grams. Much like the other metrics mentioned

here, Meteor is based on unigram matching between the machine translation and

reference translation. It computes a score based on a combination of all generalised

unigram matches between the two strings have been found, Meteor computes a

score for this matching using a combination of unigram-precision, unigram-recall,

and a measure of fragmentation that captures how well-ordered the matched words

in the machine translation are in relation to the reference. Meteor also uses para-

phrases to capture the many ways in which a translation can be expressed. According

to the authors, this metric shows improved correlation with human judgements.

In Giménez and Màrquez (2007), the authors propose metrics which take linguis-

tic features at more abstract levels into account. They show that metrics based on

deeper linguistic information make up for the short-comings of automatic evaluation

metrics and produce more reliable system rankings that better correlate with human

judgement. Their metric is based on shallow semantic structures such as word forms,
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part of speech tags, dependency relationships, syntactic phrases semantic roles and

named entities. They call these structures linguistic elements (LE), and posit that

a sentence can be seen as a bag of linguistic elements. Their system outperforms

metrics based on lexical matching alone. However, they find that semantic oriented

metrics are more stable at system level rather than at sentence level.

Lo and Wu (2011) argue that reference-based metrics such as Bleu do not ad-

equately capture semantic correctness between the machine translation output and

the reference translation. They define a good translation as one that preserves the

central information, rather than focusing on fluency. They present their alternative,

Meant, a semi-automatic metric that assesses translations by matching semantic

role fillers. Meant, however, is semi-automatic, as it relies on human judgement to

determine the correctness of these semantic role-fillers. For this reason, it is more

efficient and less labour-intensive than pure manual evaluation.

Castillo and Estrella (2012a) follow in this line of research, claiming that the

output of machine translation systems will correlate more strongly with human

translations if they have a higher Semantic Textual Similarity score with the ref-

erence translation. Using a machine learning approach based on 8 sentence-level

semantic features, they determine a semantic similarity score between each output

segment and its corresponding reference translation. They report competitive scores

at system-level, concluding that their metric is useful for measuring the performance

of MT systems.

More recent metrics have been proposed that have adapted deep learning meth-

ods. One such metric is ReVal (Gupta et al., 2015a). ReVal uses dependency-tree

Long Short Term Memory (LSTM) network to represent both the hypothesis and

the reference with a dense vector. ReVal performed competitively, when tested on

WMT2013 and WMT2014 data, outperforming Bleu on a system level for 5 out of

6 language pairs.
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Machine translation metrics remain an active area of research, with new metrics

proposed to compete with the metrics described in this section. The Workshop for

Machine Translation includes a shared task for machine translation metrics with

several new systems proposed each year (Callison-Burch et al., 2007, 2008, 2009,

2010, 2011, 2012; Bojar et al., 2013, 2014, 2015, 2016, 2017). These workshops

usually focus on European languages and have both evaluation and translation tasks.

Despite their wide adoption by the MT community, automatic metrics face a seri-

ous limitation as reference translations may not always be available. Providing these

references requires skilled translators who can be expensive and time-consuming.

Reference translations require previously translated parallel corpora, which means

that while they can be used to evaluate the general performance of a system, they

cannot be used to evaluate a text that has not been previously translated. While

metrics like Bleu and Ter are frequently used to assess the quality of a given sys-

tem, there are situations where they are not practical for general evaluation of MT

output.

2.3.3 Reference-Free Evaluation

The restrictions and short-comings of the reference-based translation metrics have

led into further investigation of the MT evaluation problem. Reference-free eval-

uation was proposed as a solution to the problems introduced by the need for a

reference translation. Confidence estimation (CE) in MT treats evaluation as a con-

fidence problem, and measures how sure a system is of its own output. CE is based

on techniques used to measure confidence in speech recognition. This score can be

interpreted as a quantitative estimate of translation quality (Kulesza and Shieber,

2004) and generally relies on a feature vector which encapsulates information about

the hypothesis text, and predicts a variable that indicates the quality of the trans-

lation. This variable can range from a binary value that indicates whether the
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translation is good or bad, or a continuous score that assesses the translation qual-

ity. The features in question depend on the source text and hypothesis translation

and do not require a reference translation. This enables testers to use confidence

estimation where the reference translation is unavailable at testing time.

Confidence Estimation

While previously used in speech recognition, the use of confidence estimation for

machine translation output was first introduced by Gandrabur and Foster (2003),

who use CE in order to enhance an interactive text prediction tool for translators.

The system provides up to 5 machine translation options from an MT system, based

on the first few letters typed by the translator. Using two types of neural nets

(single and multi-layer perceptrons), they investigate the benefit of using confidence

estimation in discrimination power and the relevance of various features and model

combinations. They train their model on the Hansard English-French parallel corpus

which spans 1.3 million translation predictions. They found that CE layer provided

a significant gain (10% benefit in accuracy) to the translators in two out of three

translation models tested.

Ueffing et al. (2003) present and apply several concepts of confidence measures

for SMT and compute word posterior probabilities based solely on surface-based

features contained in the output. They perform confidence estimation on the word

level, measuring the confidence of correctness for each generated word and comparing

it to a threshold. If the word’s confidence is above the threshold, it is tagged as

“correct”. Otherwise, it is tagged as “false”. They perform their experiments on

two separate corpora: a trilingual corpus (LC-STAR) and the TransType2 corpus

(Langlais et al., 2000), which consists of technical manuals. The first corpus includes

English, Spanish and Catalan, and the second includes English, French, Spanish

and German. Using an IBM-4 translation model (Brown et al., 1993), they set up
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experiments for nine language pairs and calculated a baseline for correctness based

on word error rate (WER), graph error rage (GER) and word graph density (WGD).

Experiments showed that both systems performed well and reduced the confidence

error rate.

A more detailed study of confidence estimation for machine translation is pre-

sented by Blatz et al. (2004), who use MT metrics to evaluate the “correctness”

of MT output on both the sentence level and the word level. They label sentences

as “good” and “bad”; based on Wer, a metric based on Levenstein distance, and

Nist scores rather than manual scores, and estimate the quality of the output by

analysing a total of 91 sentence-level features in the source and target texts. These

features were chosen to account for different aspects of translation, and included

both surface features (such as average target word statistics and basic syntactic

information) and system-dependent features, such as n-best lists and IBM model

scores (which model probability distributions of translations) (Brown et al., 1993).

In keeping with the principle of confidence estimation, none of the features relied

on the reference translation. They carried out their experiments using Chinese-to-

English datasets and tested different machine learning learning algorithms on this

dataset. They tested a number of machine learning and found that multilayer per-

ceptrons outperformed all the other models. However, the system performed poorly,

due to its reliance on automatic metrics rather than human evaluation.

Quirk (2004) avoided this problem by using human scores to tag their dataset.

While the ensuing data set was considerably smaller, the scores were more reliable

and therefore more useful than those based on automatic metrics, which often fail

to correlate to human judgement. Quirk (2004) showed that a smaller dataset with

indicative features that are manually evaluated can outperform large samples with

automatic scores.

Confidence estimation (CE) focuses mainly on system-dependent features and
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on measuring how confident a given system is rather than how correct the transla-

tion is. This approach has several disadvantages. The confidence estimation relies

heavily on the machine translation system, and is limited in versatility and applica-

tion. Furthermore, confidence estimation is useless in cases where the system does

not grant access to its inner workings, such as commercially available systems. Ad-

ditionally, extraction of system-dependent features can be computationally costly,

more so than system-independent features.

Machine Translation Quality Estimation

Machine Translation Quality Estimation (MTQE) addresses the short-comings of

confidence estimation and investigate the use features and measures that are system-

independent. Though nowadays, MTQE has come to refer to both CE and QE

prediction systems. This allows MTQE to make use of the information in both sets

of features.

Early work in MTQE built on the concept of confidence estimation described in

Section 2.3.3. In contrast, MTQE used only system-independent features based on

the source sentence and target translation (Specia et al., 2009a). They trained a

Support Vector Machine (SVM) regression model based on 74 shallow features, and

reported significant gains in accuracy over MT evaluation metrics. At first, these

approaches to MTQE focused mainly on shallow features based on the source and

target sentences. Such features include n-gram counts, the average length of tokens,

punctuation statistics and sentence length among other features. Later systems

incorporate linguistic features such as part of speech tags, syntactic information

and word alignment information (Specia et al., 2010).

In the context of MTQE, the term “quality” itself is flexible and can change

to reflect specific applications, from quality assurance, gisting and estimating post-

editing (PE) effort to ranking translations. Specia et al. (2009b) define quality
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in terms of PE efficiency, using MTQE to filter out sentences that would require

too much time to post-edit. Similarly, He et al. (2010) use MTQE techniques to

predict human PE effort and recommend MT outputs to Translation Memory (TM)

users based on estimated PE effort. In contrast, Specia et al. (2010) use MTQE

to rank translations from different systems and highlight inadequate segments for

post-editing.

The WMT Shared Tasks on Quality Estimation

Since 2012, MTQE has been the focus of a shared task at the annual Workshop for

Statistical Machine Translation (WMT). This task has provided a common ground

for the comparison and evaluation of different MTQE systems and data at the word,

sentence and document level. The workshop is one of many similar workshops and

focuses on using parallel corpora for machine translation, evaluation, and quality

estimation by setting up shared tasks with an open participation, and ranking the

participating systems according to performance.

The first task, in 2012, set out two variations: ranking and scoring. The dataset

itself was made up of English-Spanish language pairs, produced by the phrase-based

SMT system, Moses (Koehn et al., 2003). The sentences were manually annotated

for post-editing effort using the following scale:

1 A score of 1 indicates the The MT output is incomprehensible and needs to

be translated from scratch.

2 A score of 2 means that about 50% -70% of the MT output needs to be edited.

3 A score of 3 means about 25-50% of the MT output needs to be edited.

4 A score of 4 only about 10-25% of the MT output needs to be edited.

5 A score of 5 means the MT output requires little to no editing.
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Systems were required to predict a score based on this scale for English-Spanish

translations. Evaluation for the scoring task was performed using Root Mean

Squared Error (MSE) and Mean Absolute Error (MAE).

MAE measures the average magnitude of the errors on the test set, without

considering their direction. Therefore, it is ideal for measuring the accuracy for

continuous variables. MAE is calculated as per Equation 2.7.

MAE =
1

n

∑
|xi − y| (2.7)

where n is the number of instances in the test set, xi is the score predicted by the

system, and y is the observed score. Root Mean Squared Error is similar, but uses

the square as defined by the Equation 2.8.

RMSE =

√
1

n

∑
(xi − y)2 (2.8)

To evaluate the ranking task, the organisers developed a new metric called

DeltaAvg (Callison-Burch et al., 2012). The baseline system to beat was a system

using the 17 features found most relevant in Specia et al. (2009b). These features

would later become the baseline for QuEst (c.f. Section 2.3.4). Eleven teams sub-

mitted one or more systems to the shared task. Only 5 of the submitted systems

beat the baseline by a statistically significant measure. The top performing sys-

tem was submitted by the SDL Language Weaver team (Soricut et al., 2012), and

used both a M5P regression-tree and SVM-regression models. In addition to the

baseline features and the system-dependent (decoder) features, the team developed

and tested a variety of features including out of vocabulary words, Language Model

Perplexity scores and word alignment scores.

The shared task on quality estimation returned in 2013 (Bojar et al., 2013).
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The [1-5] scores were replaced with Hter scores (c.f. Section 2.3.1). The task also

added two additional subtasks, a system selection subtask, where participants were

required to rank up to five alternative translations for the same source sentence pro-

duced by multiple MT systems, and a subtaks predicting post-editing time, where

the participants were required to predict a time (in seconds) required to post-edit

the MT output. Additionally, a whole new word-level quality estimation task was

introduced. In their submission to the workshop, Biçici and Van Genabith (2013)

introduce a novel approach in the form of referential translation machines, a com-

putational model for identifying the translation acts between any two data sets.

RTMs remove the need to use any system or language dependent data, and perform

competitively in both the sentence and word level MTQE tasks. This system ranked

first and second in all of the subtasks.

The following year, the WMT shared task on MTQE aimed to study the effects

of the new labels and focus more on the effects of mixed domains datasets, as well

as the effects of MTQE on human translations. That year’s shared task had three

subtasks: The first was a MTQE task based on a new scoring system of post-editing

effort (a scale of 1-3, where 1 means use as is, 2 means post-editing is required, and 3

means translate from scratch). The second and third subtasks were similar to those

of the previous year: MTQE based on Hter and MTQE based on post-editing time

respectively. The language pairs were expanded to include English-Spanish, English-

German, and Spanish-English. Most notably, that year’s task focused on system-

independent features only, and did not provide the participants access to system-

dependent information as in previous years (Bojar et al., 2014). That year’s top

submissions vastly outperformed the baseline system, showing how far the research

has come since the first WMT shared task in 2012.

The WMT shared task on quality estimation continued in the following year,

with the aim to MTQE further with larger datasets (Bojar et al., 2015). This time

the three subtasks were divided along the sentence, word and the new document level
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MTQE task. A phrase-level MTQE task was added in WMT 2016 (Bojar et al.,

2016) and 2017 (Bojar et al., 2017). While most of the work on MTQE presented

in this chapter so far is feature based, designed for the output of SMT systems,

more recent neural solutions to MTQE have been proposed. POSTECH, the top

performing system to the WMT2017 shared task on MTQE was entirely neural

based, and required no feature engineering at all (Kim et al., 2017). The system

uses Multi-level task learning with stack propagation. This system extended to the

word, phrase, and sentence-level MTQE tasks and outperformed all other systems in

these tasks. The rise of neural MT and the application of neural methods to MTQE

led to the development of deepQuest, a framework similar to QuEst, created to

accommodate neural approaches at all levels, including the document level (Ive et al.,

2018). Their system, while based on a simplification of POSTECH, outperforms the

former while also being significantly faster.

2.3.4 The QuEst Framework

Today, the state of the art quality estimation techniques have been combined into

the open-source framework, QuEst++ (Specia et al., 2015). QuEst++ is an open

source framework for machine translation quality estimation. In addition to a feature

extraction framework, QuEst++ provides the scikit-learn toolkit 6, which contains

all the machine learning algorithms necessary to build the prediction models.

The tool offers three different variants for MTQE:

• Sentence-Level MTQE: compares a pair of sentences in the source of target

language. This variant has received the most attention in research to date.

• Document-Level MTQE: predicts a single label for entire documents.

• Word-Level MTQE: produces a label for each target word

6https://scikit-learn.org/stable/
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QuEst++ gives access to a large variety of features, each relevant to different tasks

and definitions of quality. The features are divided into three categories:

• Baseline Features: These are the 17 system-independent features. These fea-

tures include sentence length, n-gram overlap, and punctuation tokens.

• Black Box Features: An extended list of system-independent features. There

111 Black Box features in total. These include the percentage of nouns and

verbs in each sentence, language model probabilities and perplexities and the

percentage of numbers per sentence, among others.

• Glass Box Features: These are system-dependent features specific to the SMT

system. There are 47 in total. These include distortion features, the percentage

of incorrectly translated words and log probability scores, among others.

QuEst++ and its predecessor, QuEst (Specia et al., 2013), are used as a baseline

in the earlier WMT shared tasks for Quality Estimation (QE) shared tasks. In this

research, we use QuEst++ for all MTQE tasks.

2.4 Motivation and Context

Given the success of supervised machine learning methods in tackling the problem

of similarity, we chose to build on this trend when designing our own model for

determining semantic textual similarity. Choosing to work with supervised machine

learning allowed us to focus on feature engineering to identify the strongest indicators

of similarity. Furthermore, at the time of writing, the lack of a large enough dataset

to for similarity tasks made it difficult to use deep learning methods. In this section,

we will provide a brief overview of the design choices and justify their use.

47



2.4.1 Support Vector Machines

We chose to use Support Vector Machines (SVM) to address our machine learning

solutions and continue to use SVMs throughout our research. SVM is a supervised

machine learning algorithm that is capable of both classification and regression (Vap-

nik, 2013). In classification problems, SVMs classify sets of data by determining an

optimal hyperplace that separates the data into categories. This can be done for

highly complex data and can be extended to non-linear data via the Kernel Trick.

Support vectors were considered state-of-the-art in solving classification and regres-

sion problems (Lee et al., 2010) because of its good generalisation performance in

many real applications. At the time of writing, SVMs were widely used in NLP

tasks and QuEst++ (c.f. Section 2.3.4) was run using SVMs. In order to compare

our results directly to those produced by the WMT workshops and the Quest++

baseline system in particular, we chose to continue to use to SVMs throughout this

research. This choice allowed us to finely tune our features based on performance,

and to achieve competitive results despite small amounts of data at our disposal.

In order to achieve good results with SVMs, the hyperparameters need to be tuned.

For a RBF kernel, these parameters are namely C and gamma. C is the “cost” of

misclassification, and trades off correct classification against maximising the deci-

sion function’s margin. Gamma defines how far the influence of a single training

example reaches. A high value of gamma leads to more accuracy but potentially

biased results. For every SVM model, these parameters need to be tuned for op-

timal variance and bias. In order to determine the optimal values, we perform a

Gridsearch.

All the training, prediction and tuning were run using LibSVM7 (Chang and Lin,

2011a), a freely available and open-source integrated software for support vector

classification and regression.

7https://www.csie.ntu.edu.tw/~cjlin/libsvm/

48



2.4.2 Evaluation Methods

Most of our systems were submitted in shared tasks, in order to compare our work

to the upcoming state of the art methods in each of the respective fields. The

evaluation methods these tasks use can differ based on the different workshops and

organisers. In order to remain comparable, we use the same methods used by the

shared tasks.

Pearson Correlation Coefficient

As a general rule we use Pearson Correlation Coefficient to evaluate our meth-

ods. Pearson Correlation Coefficient measures the linear correlation between two

variables, as presented in Equation 2.1. Pearson is one of the most widely used co-

efficients to measure linear relationships between two normal distributed variables,

and is used in most of the shared tasks to rank submissions.

We use the Pearson Correlation Coefficient to evaluate our STS method and

compare it to the other systems submitted to the SemEval tasks in 2014 and 2015

shared tasks. We also use Pearson to perform feature selection.

Spearman Rank Correlation

While we do not use Spearman Rank Correlation for evaluation, it is used once in

this thesis, when calculating distributional similarity measures in Section 3.3.1.

Spearman Correlation differs somewhat from Pearson as it sorts the observations

by rank and computes the distance between rank rather than absolute. Spearman is

considered more robust to outliers and is not linked to the distribution of the data.

Spearman Correlation is defined by Equation 2.9
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ρ = 1− 6
∑
d2i

n(n2 − 1)
(2.9)

where d is the pairwise distance of the ranks of the variables and n is the number

of samples.

Mean Error

The Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are met-

rics used to measure accuracy. MAE measures the average magnitude of errors in a

set of predictions as described in Equation 2.7. RMSE is similar but uses the roof

of the squared differences as described in Equation RMSE. Both methods express

average model prediction error and are used by shared tasks such as WMT (c.f.

Section 2.3.3) and QATS ( (Štajner et al., 2016)) to evaluate submitted systems

and rank them. Therefore, we use MAE to evaluate our approach to integrating

STS into the machine translation quality estimation in Section 4.3 and both MAE

and RMSE to evaluate our approach to using STS for text simplification in Section

6.2.

2.5 Conclusion

In this chapter, we presented related research in STS and MT Evaluation. In order

to properly frame context of STS research, we started by presenting the evolution of

RTE and its applications. The majority of research into STS is presented within the

context of SemEval 2012 – 2017, where shared tasks on STS provided a venue for

the comparison and evaluation of STS systems. STS also provides a large variety of

annotated data within a number of different domains for testing training. We present

the shared tasks on STS and the top-performing systems in each workshop. With a
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few exceptions, most of these systems frame STS as a supervised machine learning

task, with a variety of language technology and semantically motivated features.

Newer submissions have ventured into deep learning to determine STS. The second

half of this chapter focuses on MT evaluation, covering both human and automatic

metrics, like Bleu, Ter and Meteor. Automatic metrics work well as long as one

or more reference translation is available against which to compare the translation.

MTQE does not require a reference translation, and instead relies on information

present in the source and translated sentences, and occasionally on the MT system

itself. MTQE treats evaluation as a machine learning task, building regressors or

classifiers depending on the task, and relying on a variety of both system dependent

and independent features. We present the evolution of MTQE from confidence

estimation, mostly within the context of WMT 2011 – 2018. Finally, we describe

QuEst++, a widely-used feature extractor for sentence-level, document-level and

word-level MTQE.
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Chapter 3

Determining Semantic Textual

Similarity through Machine

Learning

3.1 Introduction

In Section 2.2, we defined STS as the degree of semantic similarity between two

sentences. As this thesis investigates the uses of STS in evaluation, we dedicate

this chapter to developing a ML system that captures semantic similarity between

two sentences. As we intend to use this system in several experiments, we focus on

building a system that is accurate, system-independent, and fast in terms of run

time. This chapter describes three systems that evaluate semantic textual similarity

through machine learning methods and are part of our submissions to the SemEval

Workshop for 2014 (Marelli et al., 2014a) and 2015 (Agirre et al., 2015). The remain-

der of this chapter is structured as follows: Section 3.2 describes our participation in

the first task of SemEval 2014 workshop, titled: Evaluation of compositional distri-

butional semantic models on full sentences through semantic relatedness and textual
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entailment. Section 3.3 presents our participation in 2015’s Task 2: Semantic Tex-

tual Similarity. The systems build on each other and attempt to improve on the

previous system by introducing new features that capture semantic similarity more

accurately. Section 3.4 describes the system we use for experiments in the remainder

of this thesis: a simplification of the previous two systems optimised for speed and

accuracy.

3.2 UoW Submission, SemEval2014

This system is our submission to the SemEval 2014 Task 1, which required partic-

ipants to submit systems that predicted the semantic similarity between two sen-

tences. This task is further detailed in Section 2.2.

We submitted system runs for both sub-tasks, using the same overall system

with minor variations for each. Both systems employ a Machine Learning (ML)

method which exploits available NLP technology, typed dependencies, paraphras-

ing, machine translation evaluation metrics, quality estimation metrics and corpus

pattern analysis8 (CPA). However, while we build a regression model for related-

ness, we treat the entailment problem as a classification model. Both systems use

the same set of features. According to our evaluation, some features perform better

depending on the specific subtask.

The rest of this section describes in detail the training data, features, and Ma-

chine Learning algorithms before reporting the performance results and error anal-

ysis.

8http://pdev.org.uk
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3.2.1 The SICK Dataset

The SICK (Sentences Involving Compositional Knowledge) dataset (Marelli et al.,

2014b) is a set of aligned sentences specifically designed for compositional distri-

butional semantics. It includes a large number of English sentence pairs that are

rich in lexical, syntactic and semantic phenomena. The similarity score is a score

between 1 and 5, previously described in Section 2.2.3. These scores are obtained

by averaging several separate annotations by distinct evaluators. For this reason,

they are continuous, rather than discrete.

The SICK dataset is generated from existing datasets based on images and video

descriptions. Each sentence pair is annotated for relatedness (similarity) and entail-

ment by means of crowd-sourcing techniques. It consists of 10,000 pairs. In the full

set, the gold scores’ distribution for relatedness are summarised in Figure 3.1.

Figure 3.1: Distribution of Gold Scores for Relatedness in SICK

We provide examples for each of these intervals below in Examples 1-5.

In Example (1), the two sentences are unrelated, except in that they both concern
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children.

(1) Range: [1,2) – Score 1.6

a. Sentence A: There are no children playing and waiting

b. Sentence B: Three Asian kids are dancing and a man is looking

In Example (2), the two sentences are on the same topic, but the details are different.

(2) Range: [2,3) – Score 2.4

a. Sentence A: A man is sitting on a chair and rubbing his eyes

b. Sentence B: A tattooed man is on a sofa and is holding a pencil

In Example (3), the two sentences are on the same topic and only some minor details

(the clothes and the sound equipment), differ.

(3) Range: [3,4) – Score 3.2

a. Sentence A: A girl is wearing white clothes and is dancing

b. Sentence B: The blond girl is dancing in front of the sound equipment

In Example (4), the two sentences are virtually identical, differing only slightly.

(4) Range: [4,5] – Score 4.8

a. Sentence A: A motorcyclist is riding a motorbike dangerously along a

roadway

b. Sentence B: A motorcyclist is riding a motorbike along a roadway

In the full set, gold scores’ distribution for entailment are summarised in figure

3.2.

We provide examples for the entailment distribution below in Examples 5-7:
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Figure 3.2: Distribution of Gold Scores for Entailment in SICK

(5) Class: Neutral

a. Sentence A: Two dogs are playing by a tree

b. Sentence B: A dog is leaping high in the air and another is watching

(6) Class: Contradiction

a. Sentence A: A hiker is on top of the mountain and is dancing

b. Sentence B: There is no hiker dancing on top of the mountain

(7) Class: Entailment

a. Sentence A: A nude lady is walking in front of a crowd in body paint

b. Sentence B: A topless girl is covered in paint

In addition to the STS task, the SICK corpus is employed in further experiments

through-out this thesis.
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3.2.2 The Feature Set

This system uses a total of 31 features which are expanded on in this subsection.

The features are divided into 6 subsets based on their type. The first 7 features are

language technology features extracted using off-the-shelf language processing tools.

The rest of this section goes into further detail on the features and the methods

through which they were extracted.

Language Technology Features (F1 - F7)

The language technology features refer to a set of 7 figures that calculate word

overlap between two sentences. The aim of these features is to capture token-based

grammatical similarity between a pair of sentences. We extract a total of 7 language

technology features. These features use pre-existing language processing tools which

are found in the Stanford CoreNLP9 toolkit (Manning et al., 2014). In a general

sense, these features calculate word overlap between two sentences using different

types of units that constitute sentences.

The features look at more than just the surface form of sentences. Some features

look at the overlap of parts of speech, lemma, dependency relations and named

entities. These features are useful in that they encapsulate a surface form similarity

between sentences, and capture which words, concepts, and actions recur in a pair.

Overlap is computed using the Jaccard similarity coefficient. The Jaccard sim-

ilarity coefficient is defined as the measure of similarity between two sets. It is

calculated by taking the size of the intersection of two sets divided by the size of

their union.

This is demonstrated in equation 3.1.

9http://nlp.stanford.edu/software/corenlp.shtml
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Sim(s1, s2) =
|s1 ∩ s2|
|s1 ∪ s2|

(3.1)

where Sim(s1, s2) is the Jaccard similarity between sets of words s1 and s2.

The 7 language technology features can be summarised as:

1. Word Overlap

We calculate 4 different types of word overlap:

(a) Surface form overlap (F1): determines word overlap based on the un-

changed form of the word. This feature captures how many words overlap

between sentences.

(b) Lemma form overlap (F2): converts words to their base forms before

calculating overlap. By looking at the base forms of words, this feature

can capture similarity even when words have different inflections, affixes,

suffixes, or tenses across sentences.

(c) Part of Speech overlap (F3): annotates words with their part of speech

before calculating overlap.

(d) Named Entities Overlap (NE) (F4): the Stanford Toolkit identifies named

entities, which we then use to calculate overlap.

2. Dependency Relations (F4-F5: GOVDep)

The first of two features based on dependency relations, this feature concate-

nates words involved in a dependency relation.

For example, the sentence: the kids are playing outdoors becomes kids::the,

playing::kids, playing::are, ROOT::playing, playing::outdoors

The Jaccard similarity is then calculated using the concatenated dependent

words.
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3. Grammatical Relations (F6: GRAMrel)

The second of the two dependency relations uses morphosyntactic tags instead

of concatenated dependency words. In this case the same sentence used above (

the kids are playing outdoors) is replaced by its grammatical tags and becomes

det, nsubj, aux, root, dobj” and “det, nsubj, aux, root, dobj. Jaccard Similarity

is then calculated using these tags instead of the original words.

4. Coreference (F7:CORef)

The final language technology feature identifies coreference relations and deter-

mines clusters of coreference entities. This feature attempts to capture where

expressions and phrases refer to the same entity. This can help us derive the

correct interpretation of texts across a sentence pair.

The coreference feature value is calculated using equation 3.2:

Coref =
CC

TC
(3.2)

where:

CC is the number of clusters formed by the participation of entities (at least

one entity from each sentence of the pair) in both sentences and TC is the

total number of clusters.

Paraphrasing Feature (F8: PPD)

The paraphrasing feature aims to detect when a segment is a paraphrase of

another segment. The assumption behind this feature is that if segments of the

text are paraphrases of each other, then we would expect a high similarity between

the sentence pairs. To that end, it makes use of the PPDB paraphrase database

(Ganitkevitch et al., 2013) to extend each sentence’s n-grams with matching n-grams

from the database. We then calculate overlap (Jaccard similarity) between these n-

59



grams to get a feature value.

Machine Translation Evaluation Features (F9–F11)

In another attempt to capture similarity between two sentences, we turn to Bleu

(Papineni et al., 2002). Bleu matches n-grams between the MT output and the

reference translation, using n-gram precision. We use SBleu to capture the overlap

on the sentence level. Bleu and SBleu are further explained in Chapter 2.3.2. We

extract 3 features using BLEU based on the sentences’ surface form (SBLEU), lemma

(LBLEU) and parts of speech (PBLEU). Note the similarity between the forms here

and the forms in the Language Technology features. These features provide another

layer of similarity based on n-grams overlap rather than word overlap.

Corpus Pattern Analysis Features (F12: CPA)

Corpus Pattern Analysis (CPA) is a corpus-driven technique in corpus linguistics

and lexicography that associates word meaning with word use by mapping meaning

onto specific syntagmatic patterns exhibited by a verb in any type of text (Hanks,

2013). CPA aims at identifying patterns of normal usage (’norms’), including literal

and metaphorical uses, phrasal verbs and idioms, and exploring the way patterns

are creatively exploited (’exploitations’). CPA is currently being used to compile

the Pattern Dictionary of English Verbs (PDEV), an online lexical resource that

currently covers nearly 1,300 English verbs. Our final two features make use of the

Pattern Dictionary of English Verbs. The first of these features returns 1 when the

verb patterns across sentences match, and 0 otherwise. The second feature returns

a probability of a PDEV pattern given a specific word. The probability itself is

computed over a manually tagged portion of the British National Corpus (BNC).

Negation Feature (F13: NEG)
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This feature checks for the presence of a negation word (which we define to be:

no, never and not) in the pair of sentences and returns “1” (“0” otherwise) if both or

none of the sentences contain any of these words. This feature helps determine if one

sentence is a direct contradiction of another and therefore proves more important in

modelling textual entailment and contradiction than semantic textual similarity.

Machine Translation Quality Estimation Features (F14–F31: QE)

We include seventeen features based on Machine Translation Quality Estimation

(MTQE) features used by Specia et al. (2009b) to predict machine translation qual-

ity without the use of a reference translation. All of these features are extracted

using QuEst, an earlier version of QuEst++ (c.f. Chapter 4.4.1). To make these

features work for our data, which is monolingual, we treat the first set of sentences

as the Machine Translation (MT) “source”, and the second set of sentences as the

MT “target”. The MTQE features include shallow surface features such as the

number of punctuation marks, the average length of words, the number of tokens,

n-gram frequencies and language model probabilities10. MTQE features relate to

well-formedness and syntax, and are not usually used to compute semantic relat-

edness between sentences. However, they do reflect structural similarities between

sentences and therefore might have given us a small insight into semantic relatedness.

3.2.3 Prediction and Results

We submitted runs to both subtasks in SemEval2014’s Task 1, tackling both the

relatedness and entailment problem. Therefore, we built two separate supervised

machine learning models using the same features, using Support Vector Machines

for classification and regression analysis. We rely on Lib-SVM (Chang and Lin,

2011b) to build our models.

10A full description of the framework is provided in Section 4.4.1
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We build a regression model for the relatedness task and a classification model

for the entailment task. The regression model estimates a continuous score between

1 and 5 for each sentence. As the entailment task had only 3 discrete categories,

we use a 3-way classification model for it instead. We trained both systems on the

4,500 sentence training set, augmented with the 500 sentence trial data provided by

the SemEval workshop task organisers. To cope with the overfitting of the data,

we optimised the cost parametres through a grid-search which uses a 5-fold cross-

validation method.

Our system performed adequately, with our best run achieving a mean Pearson

Correlation of 0.72 and a MSE of 0.51. In comparison, the highest ranking system

scored a Pearson Correlation of 0.82 and MSE of 0.32, while the lowest scored a

Pearson Correlation of 0.47 and a MSE of 1.10. Our system performed similarly in

the entailment task, achieving an accuracy of 78.53% on our best run, compared to

the baseline of 56.2%. The best performing system achieved an accuracy of 84.5%.

Tables 3.1 and 3.2 provide a summary of these results. These tables include all 4

runs we submitted to the tasks, compared to the baseline (basic word overlap) and

the best performing system.

Table 3.1: Semantic Textual Similarity - as calculated by SemEval2014

Pearson Correlation

Run 1 Run 2 Run 3 Run 4 Best System Baseline

C 8 8 2 2

λ 0.0441 0.0441 0.125 0.125

Pearson 0.7111 0.71 0.70 0.70 0.82 0.63
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Table 3.2: Entailment - as calculated by SemEval2014

Accuracy

Run 1 Run 2 Run 3 Run 4 Best System Baseline

C 16 16 8 8

λ 0.0625 0.0625 0.5 0.5

Accuracy 78.53 78.53 78.34 78.34 84.5 56.2

3.2.4 A Feature Analysis

We find the least useful features to be the MTQE features, as they focus on fluency

rather than semantic correctness. The MTQE features contribute to only minor

improvements, increasing the Pearson correlation coefficient by only 0.027.

The most useful features, in contrast, are language technology features, which

prove to be the strongest predictors. The lemmatised word overlap is the strongest

indicator for similarity, followed by the surface form word overlap (“surface” on the

chart). The paraphrasing feature also shows a good correlation to similarity, with

a Pearson score of 0.45. The CPA features and the machine translation evaluation

features (SBLEU, LBLEU, PBLEU) show a weak correlation when tested individu-

ally. The negation feature (NE) does not seem to correlate with relatedness. Figure

3.3 summarises the performance of all the features individually, showing the best

performing features for the similarity task.
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Figure 3.3: Individual Performance of features

3.3 MiniExperts, SemEval2015

The following year, we participated in SemEval2015’s Task 2, titled “Semantic Tex-

tual Similarity”. Similar to Task 1 in the previous year, this task called for systems

that, given a sentence pair A and B, return a similarity score based on how closely

related the two sentences are. However, where 2014’s Task 1 included an entailment

subtask, this year’s task instead was divided into an English and Spanish language

subtask.

For our submission to the 2015 SemEval workshop, we improve on our 2014

system. We strip the UoW (c.f. Section 3.2) system down to a baseline system

with 13 features, choosing the features that performed the most strongly based on

the feature selection algorithm. These features are language technology features,

the paraphrasing features and the CPA features, or features 1 through 13 in the

previous system.
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3.3.1 The Feature Set

The features in this submission build on the features for the 2014 submission. The

basis of this system are the first 13 features described in Section 3.2: The language

technology features, the paraphrasing feature, the CPA features, the negation feature

and the machine translation evaluation features. In addition to the 13 baseline

features, we introduce a set of Distributional, Semantic and Conceptual Similarity

Measures, as well as a feature reflecting MWEs across sentences.

Distributional Similarity Measures

We use two independent IR measures, the Spearman’s Rank Correlation Coeffi-

cient (SCC) and the χ2 to compute the similarity between two sentences written in

the same language (Kilgarriff, 2001). For every pair of sentences, we use the lemmas

to extract the list of common terms to compute both measures.

Conceptual Similarity Measures

In order to calculate the conceptual similarity, we take advantage of the Babel-

Net11 (Navigli and Ponzetto, 2012) multilingual semantic network, which organises

lexical information conceptually. To that end, we create a conceptual sentence

for all input pairs by extracting lemmatised nouns, verbs, adjectives and adverbs.

We then build a conceptual term list of all the occurrences of the term in the

conceptual network (i.e. BabelNet). The resulting “conceptual representation”

of both sentences, contains a set of conceptual term lists. For each term in the

“conceptual sentence 1”, we count the number of co-occurrences in the conceptual

term lists in the “conceptual sentence 2”. After computing all the co-occurrences,

we used these values to calculate the Jaccard’ (Jaccard, 1901), Lin’ (Lin, 1998) and

PMI’ (Turney, 2001) scores.

11http://babelnet.org
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This feature is especially expensive computationally, as it required us to query

the BabelNet database for every sentence.

Semantic Similarity Measures

This feature takes advantage of the Align, Disambiguate and Walk (ADW)12

library (Pilehvar et al., 2013), a WordNet-based approach for measuring semantic

similarity of arbitrary pairs of lexical items. As the ADW library permits us to

measure the semantic similarity between two raw English sentences, either by using

disambiguation or not, we used both options to calculate all the comparison methods

made available by the library, i.e. WeightedOverlap, Cosine, Jaccard, KLDivergence

and JensenShannon divergence. These values make up 5 different features.

Multiword Expressions

Multiword Expressions (MWEs) are meaningful lexical units whose distinct id-

iosyncratic properties call for special treatment within a computational system. For

the purpose of our experiments, we focused on two more common types of MWEs in

English: verb noun combinations (e.g. make sure, take place) and verb particle

constructions (e.g. to make up, to put down).

Whenever a verb+noun or a verb+particle combination occurs in our sentence

pair, we search a prepared list MWEs, sorted according to their likelihood measures

of association. The degree of association of these combinations served as a feature

in our ML system.

12http://lcl.uniroma1.it/adw
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3.3.2 Prediction and Results

We build a regression model which estimates a continuous score between 0 and 5

for each sentence pair.

We trained this system on a combination of training and trial data provided by

the 2012, 2013 and 2014 SemEval tasks. We used these datasets to form a training

set of 9,750 sentence pairs combining the different domains covered by the STS task:

image description (image), news headlines (headlines), student answers paired with

reference answers (answers-students), answers to questions posted in stack exchange

forums (answers-forum) and English discussion forum data exhibiting committed

belief (belief).

We used LibSVM13, a library for SVMs developed by Chang and Lin (2011b) in

order to predict the semantic similarity. We optimised for the values of C and γ

through a grid-search which uses a 5-fold cross-validation method, and all systems

use an RBF kernel. Our system performed adequately, with our best run achieving a

mean Pearson Correlation of 0.7216, as scored by SemEval 2015. Table 3.3 provides

a breakdown of these results. In comparison, the top ranking system achieved a

mean Pearson Correlation of 0.8015.

Table 3.3: Pearson Correlation - as calculated by SemEval2015

Pearson Correlation

answers-forums 0.6781

answers-students 0.7304

belief 0.6294

headlines 0.6912

images 0.8109

mean 0.7216

rank (out of 74) 33

13http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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For the sake of comparison, we also tested our system on the same dataset used in

the 2014 workshop. These features bring a small improvement to the table, and our

new system tested on the SICK dataset yielded a better Pearson correlation score.

As reported in Table 3.4, the MiniExperts system submitted to the 2015 workshop

drastically outperformed the UoW system. However, the new features, especially

the distributional and conceptual similarity features, are computationally far too

costly to realistically run on large data sets, making them useless in spite of the

improvements.

Table 3.4: Comparing Results - UoW vs MiniExperts on the SICK dataset

Pearson Correlation

UoW MiniExperts

Pearson 0.7166 0.806

3.4 The STS system used in this research

As this thesis concerns itself with STS and its uses in various applications, we

decided to use an optimised version combining both STS systems for the rest of

the experiments described here-in. We therefore performed some feature selection

in order to determine which features we could safely discard without dramatically

affecting the system’s accuracy.

Our final features are selected for both accuracy and efficiency. As the 17 Quality

Estimation Features and the Multiword Expression features scored the lowest, with

a Pearson Correlation less that 0.1, we discard them from the new system. We

also discard the distributional and Conceptual Similarity measures for being too

computationally costly and time-consuming.

The final system consists of 13 features:
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• Language Technology Features

– (1-4) Word Overlap: Surface form, Lemma, PoS, and Named Entities.

– (5) Dependency Relations (GOVDep)

– (6) Grammatical Relations (GRAMrel)

– (7) Coreference (CORef)

• (8) Paraphrasing Feature (PPD)

• Machine Translation Evaluation Features

– (9) Sentence Level BLEU (SBLEU)

– (10) Lemma Level BLEU (LBLEU)

– (11) PoS BLEU (PBLEU)

• Corpus Pattern Analysis Features (CPA)

– (12) CPA Match

– (13) CPA Probability

These final 13 features described in this section form the basis for the system

used to calculate STS throughout the rest of this thesis.

3.5 Conclusion

In this chapter, we presented two fairly efficient and accurate approaches to predict-

ing semantic similarity for English. We build on research mainly submitted to the

SemEval workshop’s shared tasks on detecting semantic relatedness and entailment.

In Section 3.2, we described our submission to the SemEval 2014 workshop Task

1. In this submission, we use a total of 31 features and an SVM regression model
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to assign a continuous score (1-5) to English sentence pairs. This score measures

semantic relatedness. One noticeable point of our approach is that we used the

same features to also measure entailment, with a 3-way classification model (EN-

TAILMENT, CONTRADICTION, NEUTRAL). The system performed averagely

in the SemEval2014 STS task and achieved a Pearson correlation of 0.711, while

the highest ranking system in the workshop achieved a score of 0.828. Our system

ranked 10 out of 17 teams that participated in the task. Though we used the same

features for both tasks, our system performed well in each of these tasks. Therefore,

our system captures reasonably good models to compute semantic relatedness and

textual entailment.

In Section 3.3, we presented our submission to the SemEval 2015 workshop, while

building on the work presented in Section 3.2. For this submission, we reused the

first 13 features from the 2014 submission and added a number of features derived

from distributional and conceptual similarity. This version performed reasonably

well and the system’s best result ranked 33 among 74 submitted runs with 0.722

Pearson correlation over five test sets (only 0.08 correlation points less than the best

submitted run).

Finally, we described a streamlined version of the STS systems that optimises

for both accuracy and speed. This system uses only 13 features common to both

the 2014 (UoW) system and the 2015 (MiniExperts) system, and is the STS system

used in the research described in the remainder of this thesis.
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Chapter 4

Semantic Textual Similarity in

Machine Translation Quality

Estimation

4.1 Introduction

The previous chapter presented several Machine Learning approaches for STS on

the basis of which we proposed the STS method used in this thesis. In this chap-

ter, we detail a series of experiments in which we use semantic similarity measures

to correlate semantic similarity with machine translation quality. We attempt to

answer the research question:

RQ1: Can semantic textual similarity help accurately predict the quality of MT

output?

We expland the question to ask: Is it possible to evaluate the quality of a translated

sentence for which we do not have a reference translation, based on the level of
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semantic relatedness between itself and a different sentence for which we do have a

reference translation?

Machine Translation Quality Estimation (MTQE) predicts the quality of ma-

chine translation output without the need for a reference translation. This quality

can be defined differently based on the task at hand. In an attempt to focus fur-

ther on the adequacy and informativeness of translations, we integrate features of

semantic similarity into QuEst (Specia et al., 2015), a framework for MTQE feature

extraction. By using the methods we described in Section 3.4, we use semantically

similar sentences and their quality scores as features to estimate the quality of ma-

chine translated sentences. We propose a set of features that compares MT output

to a semantically similar sentence, that has already been assessed, using monolin-

gual STS tools to measure the semantic proximity of the sentence in relation to the

second sentence. Our experiments show that finding semantically similar sentences

for some datasets is difficult and time-consuming. Therefore, we opt to start from

the assumption that we already have access to semantically similar sentences. Our

results show that this method can improve the prediction of machine translation

quality for semantically similar sentences.

This chapter is structured as follows: the next section, Section 4.2, grants some

background information about previous attempts to incorporate semantic informa-

tion into machine translation quality estimation, in order to frame our research

within the context of quality estimation. Section 4.3 describes our method of in-

tegrating STS into the evaluation pipeline by using independently evaluated se-

mantically similar sentences. Section 4.4 details the data and tools we use in the

experiments described in this chapter. Section 4.5 details three separate sets of ex-

periments on three different datasets and their results. Finally, Section 4.6 sums up

our findings.
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4.2 Background

Section 2.3.3 presented an overview of MTQE within the context of reference-free

evaluation of machine translation output. As we have previously discussed, there

have been a few attempts to integrate semantic similarity into MT evaluation (Lo

and Wu (2011); Castillo and Estrella (2012b)). The results reported are generally

positive, showing that semantic information is not only useful, but often necessary,

in order to assess the quality of machine translation output. Different authors have

taken different approaches as to how to bring semantics into this task.

Specia et al. (2011) focused on meaning preservation and tried to address the

quality of MT output based on how much it preserves the meaning of the source,

rather than how easy it is to post-edit. The authors identified a number of system-

independent features that focus on adequacy. These features included comparing

sentence lengths, word and phrase overlap, named entities, dependency relations,

depth of syntactic trees, among others. The authors then trained a multiclass clas-

sifier using an SVM model to predict an adequacy score between 1 and 4, depending

on the level of meaning preserved in the translation. The dataset was obtained

by automatically translating a number of Arabic newswire texts, using two state-

of-the-art phrase-based SMT systems. The resulting English sentences were then

annotated for adequacy by 2 Arabic-English professional translators. Their obtained

results yielded an improvement over a majority class baseline.

The concept of adequacy has also been used by Rubino et al. (2013), who used

topic models for MTQE. The authors expanded on the work by Specia et al. (2011)

by adding topic model features that focused on content words in sentences. Using the

same dataset developed by the authors in Specia et al. (2011) above, the authors

reported results outperforming state-of-the-art approaches where the dataset was

annotated with adequacy information.
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Also in 2013, Biçici (2013) introduced the use of a computational model for

judging monolingual and bilingual similarity: the Referential Translation Machines

(RTMs). According to Biçici and Yuret (2011), “RTMs provide a computational

model for quality and semantic similarity judgments using retrieval of relevant train-

ing data”. The authors participated in all 4 challenges of the Quality Estimation

task at WMT 2013 (Bojar et al., 2013), which included both sentence and word-

level MTQE for German to English and English to Spanish translation pairs. The

authors used the language models provided by the task organisers to build RTMs for

the different language pairs, and trained machine learning models using both ridge

regression and support vector regression. RTMs achieved state-of-the-art results

and the authors reported top performance in both sentence and word level tasks of

the WMT 2013.

In their submission to the WMT2014 shared task on Quality Estimation, de Souza

et al. (2014) proposed a set of features that used word alignment information with

the aim of addressing semantic relations between sentences. The authors used these

features to augment QuEst’s 79 black box features and participated in both the

word-level and sentence-level subtasks, achieving top results in both. In the same

year, Kaljahi et al. (2014) employed syntactic and semantic information in MTQE

achieving an improvement over the baseline when combining these features with the

surface features of the baseline. The papers presented in this section informed our

work, which focuses on the necessity of semantic information for MT adequacy.

4.3 Integrating Semantic Textual Similarity into

Machine Translation Quality Estimation

Previous work has suggested that integrating semantic information into the quality

estimation pipeline is a crucial step towards improving the detection of adequacy in
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translated sentences. To that end, we propose bridging STS and MTQE by adding

semantic textual similarity features into the quality estimation task. As our STS

tools rely on monolingual data, we employ the use of a second sentence that bears

some semantic resemblance to the sentence we wish to evaluate.

Our approach is illustrated in Figure 4.1, where sentences AEN and BEN are

two semantically similar sentences with a similarity score R. Our task is to assess

the quality of sentence BFR with the help of sentence AFR, which has already un-

dergone machine translation evaluation, either through post-editing (e.g measuring

post-editing effort) or human evaluation (e.g. assessed on a scale from 1–5). As both

sentences, AEN and BEN are semantically similar, our hypothesis is that their trans-

lations are also semantically similar and thus we can use the reference of sentence

BFR to estimate the quality of sentence AFR.

Figure 4.1: Predicting the Quality of MT Output using a Semantically Similar

Sentence B

For each sentence AEN , for which we wish to estimate MT quality, we retrieve a

semantically similar sentence BEN which has been machine translated and has a

reference translation or a quality assessment value. We then extract the following

three scores (that we use as STS features):
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Semantic Textual Similarity (STS) score:

R represents the STS score between the source sentence pairs (sentence AEN and

sentence BEN). This is a continuous score ranging from 0 to 5. We calculate this

score using the system described in Section 3.4 in all but one of our experiments,

where we already have human annotations about STS.

Quality Score for Sentence AFR:

We calculate the quality of the MT output of Sentence A. This is either a S-Bleu

(c.f. Section 2.3.2) score based on a reference translation, or a manual score provided

by a human evaluator. This score is labelled bA in Figure 4.1.

S-Bleu Score for Sentence A:

We have no human evaluation or reference translation for Sentence BFR, but we

can calculate a quality score using Sentence A as a reference. We use sentence-level

Bleu (S-Bleu) (c.f. Section 2.3.2). This score is labelled bB in Figure 4.1. S-Bleu

is designed to work at the sentence level and will still positively score segments that

do not have a high order n-gram match.

4.4 Data and Tools

We use the following open source tools and freely available corpora to design and

test our experiments. However, as these tools do not always fulfil our purpose, we

develop a number of tools and datasets of our own design as well.
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4.4.1 The QuEst Framework

In Section 2.3.4, we provided an overview of the QuEst framework and its various

iterations. In our experiments, we use the 17 black-box features from Quest as a

baseline to allow for comparison of our work to a well-used and tested baseline.

The baseline features are system independent and include shallow surface features

(e.g. number of punctuation marks, average length of words, number of words, etc.).

They also include n-gram frequencies and language model probabilities. Table 4.1

enumerates QuEst’s 17 baseline features.

4.4.2 Translation Model

All our experiments require machine translated output to test our evaluation sys-

tems. To that end, we use a phrase based statistical machine translation (PBSMT)

system called Moses (Koehn et al., 2007). We build 5-gram language models with

Kneser-Ney smoothing trained with SRILM (Stolcke, 2002), a toolkit for building

language models, the GIZA++ implementation of IBM word alignment model 4

(Och and Ney, 2003), with refinement and phrase-extraction heuristics as described

in (Koehn et al., 2003). We used minimum error rate training (MERT) (Och, 2003)

for tuning on the development set.

We trained on 500,000 randomly sampled sentences from the Europarl corpus

(Koehn, 2005), and then tuned (using MERT) on 1,000 different unique sentences.

We trained two separate models, one to translate from English to French, and one

to translate from French to English.
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Table 4.1: Quest Baseline Features

Feature Description

1 Number of tokens in the source sentence

2 Number of tokens in the target sentence

3 Average source token length

4 Language Model probability of the source sentence

5 Language Model probability of the target sentence

6 Average number of occurrences of translated word within the target sentence

7 Average number of translations per source word in the sentence (as given by

IBM 1 table thresholded so that prob(t|s) > 0.2)

8 Average number of translations per source word in the sentence weighted by the

inverse frequency of each word in the source corpus

9 Percentage of unigrams in quartile 1 of frequency (lower frequency words) in a

corpus of the source language

10 Percentage of unigrams in quartile 4 of frequency (higher frequency words) in a

corpus of the source language

11 Percentage of bigrams in quartile 1 of frequency of source words in a corpus of

the source language

12 Percentage of bigrams in quartile 4 of frequency of source words in a corpus of

the source language

13 Percentage of trigrams in quartile 1 of frequency of source words in a corpus of

the source language

14 Percentage of trigrams in quartile 4 of frequency of source words in a corpus of

the source language

15 Percentage of unigrams in the source sentence seen in a corpus

16 Number of punctuation marks in source sentence

17 Number of punctuation marks in target sentence
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4.4.3 The DGT Translation Memory

The Directorate-General for Translation (DGT) translation memory is a corpus

of aligned sentences in 22 different languages created from the European Union’s

legislative documents (Steinberger et al., 2013). The corpus consists of sentences and

their professionally produced translations in 231 language pairs and are produced

by highly qualified human translators in specialised domains. Most of the sentences

(72%) are originally written in English and then translated. The DGT-TM contains

about 38 million translation units, over 2,000 of which are identical across all 22

languages. For the purpose of our research, we focus on the English-French language

pair.

4.4.4 The SICK Dataset

SICK (Sentences Involving Compositional Knowledge) is a dataset specifically de-

signed for compositional distributional semantics. It includes a large number of

English sentence pairs that are rich in lexical, syntactic and semantic phenomena.

Further information on the SICK dataset is presented in Section 3.2.1.

4.4.5 The FLICKR EN-FR Dataset

The datasets above face some limitations as they are not specifically designed with

our purpose in mind. Either these datasets do not share many semantically similar

sentences (DGT-TM), or they lack a reference translation or another reliable quality

rating (SICK).

The limitations of the datasets above led us to design a new dataset. This

dataset consists of a pair of English sentences of variable level of medium to high

semantic similarity, and their French machine translations. These sentences are
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extracted from the FLICKR Images dataset used for SemEval 2015 STS tasks (c.f.

Section 3.3). Each pair has a similarity rating between 4-5, crowd-sourced by human

annotators. Furthermore, we provide for each sentence a French translation created

by SMT (using a Moses phrase-based model described in Section 4.4.2), with variable

levels of translation quality. Our main objective is to build a dataset where the

translations (Fr1 and Fr2), are assigned a quality rating and a semantic similarity

score.

For this purpose we require two types of human annotations:

1 A quality score for each translation, between 1 and 5.

2 A similarity rating for the French sentences produced by the machine transla-

tion,

MT Quality Score

We obtain this score through manual evaluation by a professional translator who

was asked to score the sentences on fluency and adequacy and give them a rating

between 1 (the translation is unusable) and 5 (the translation is very good).

Example (1) represents a sample entry to be annotated.

(1) a. Sentence A

(i) EN: A group of kids is playing in a yard and an old man is standing

in the background

(ii) FR: Un groupe d’enfants joue dans une cour et un vieil homme est

debout dans l’arrière-plan

b. Sentence B

(i) EN: A group of boys in a yard is playing and a man is standing in

the background

80



(ii) FR: Un groupe de garçons dans une cour joue et un homme est

debout dans l’arrière-plan

STS Score for the MT Sentences

We obtained the STS scores for the translated MT sentences through crowd-sourcing.

Several questionnaires were posted online and circulated among French speakers,

mostly students. The questionnaires asked students to look at two machine trans-

lated sentences and rank them for similarity.

The resulting dataset is made of 1,000 sentence pairs and their 1,000 machine

translations, along with 3 separate annotations for each 4 sentences: a quality score

for the French MT output, a STS score for the English sentence pair, and a STS

score for the French sentence pair.

Example (2) shows a sample sentence pair from the dataset with the annotations.

(2) a. Sentence A

(i) EN: Two children are lying in the snow and are drawing angels

(ii) FR: Deux enfants sont couchés dans la neige et attirent anges

(iii) Translation Score: 4

b. Sentence B

(i) EN: Two people in snowsuits are lying in the snow and making

snow angels

(ii) FR: Deux personnes dans des habits de neige sont couchés dans la

neige et faire des anges de neige

(iii) Translation Score: 4

(iv) STS Score: 4

The chart in Figure 4.2 shows a final breakdown of the 1,000 pairs of translations
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and their MT evaluation score. As the sentences are quite simple and the MT system

performed quite well, most of the sentences (over 75%) score above 4 and less than

25% score 3 or lower.

Figure 4.2: Dataset Statistics

4.5 Experimental Setup

4.5.1 Preliminary Experiments

All our datasets focus on English→French MT output. In all our experiments, we

have a set of machine translated sentences A for which we need a quality score and

a set of sentences B, semantically similar to the set of sentences A and for which we

have some type of evaluation score available.

In early experiments, we attempted to use freely available datasets used in pre-

vious workshops on machine translation (WMT2012 and WMT2013) for the trans-

lation task and within the news domain (Bojar et al. (2013)). The WMT datasets
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have two main advantages: first, they allow us to compare our system with pre-

vious systems for evaluation and render our experiments replicable. Second, they

have manual evaluations that are available with the machine translations. Each

sentence in the WMT dataset comes with a score between 1 and 5, provided by

human annotators.

The first obstacle we faced in testing our approach with these datasets was the

collection of similar sentences against which to compare and evaluate. We auto-

matically searched large parallel corpora for sentences that yielded high similarity

scores. These corpora included the Europarl corpus (Koehn (2005)), the Acquis

Communautaire (Steinberger et al., 2006) and previous WMT data (from 2012 and

2013).

Furthermore, the STS system we use (see Section 3.4) returned many false-

positives. Some sentences which appeared similar to the STS system were actually

too different to be usable. This led to noisy data and unusable results. The scarcity

of semantically similar sentences and the computational cost of finding these sen-

tences, led us to look into alternate datasets, preferably those with semantic simi-

larity built into the corpus: the DGT-TM and the SICK dataset.

All our experiments followed similar set-ups. In all cases, we used 500 randomly

selected sentences for testing, and the remaining sentences in the respective data-set

for training QuEst. We automatically searched large parallel corpora for sentences

that yield high similarity scores using the STS system described in Section 3.4.

We attempted to predict the quality scores of the individual sentences, using the

STS features described in Section 4.3, added to QuEst’s 17 baseline features. We

compared our results to both the QuEst baseline (cf. Section 4.4.1) and the majority

class baseline14. We also tested our STS-related features separately, without the

baseline features, and compared them to the system with the combined system

14The Mean Absolute Error calculated using the mean rating in the training set as a projected
score for every sentence in the test set.
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(STS+baseline).

We used the Mean Absolute Error (MAE) to evaluate the prediction rate of our

systems. In our experiments, we use S-Bleu scores as the observed score.

4.5.2 Experiments on the DGT-TM

We randomly extract 500 unique sentences (B), then search the rest of the TM for

the 5 most semantically similar sentences (A) for each of these 500 sentences (STS

score > 3). This results in 2,500 sentences A (500x5) and their semantically similar

sentence pairs B. We make sure to avoid any overlap in sentence A so that while

semantically similar sentence B might recur, sentence A will remain unique. We

assign an STS score to the resulting dataset using the system described in Section

3.4. We then translate these sentence pairs using the translation model described

in Section 4.4.2 and use S-Bleu to assign evaluation scores for the MT outputs of

Sentence A and B.

Of these 2,500 sentence pairs and their MT outputs, we use 2,000 sentence pairs

to train an SVM regression model on Quest’s baseline features using using sentence

A and its MT output as the source and target sentence. We further use sentence

B’s S-Bleu score and its STS score with sentence A. We use the remaining 500

sentences to test our system. Example (3) shows a sample sentence (Sentence B)

from the DGT-TM along its semantically similar retrieved match (Sentence A) and

the machine translation output for each sentence. The STS system gave the original

English sentence pair a STS score of 4.46, indicating that only minor details differ.

(3) DG-TM Sample Sentence

a. Sentence A

(i) Source: In order to ensure that the measures provided for in this

Regulation are effective , it should enter into force on the day of
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its publication

(ii) MT: afin de garantir que les mesures prévues dans ce règlement sont

efficaces , il devrait entrer en vigueur sur le jour de sa publication

,

b. Sentence B

(i) Source: In order to ensure that the measures provided for in this

Regulation are effective ,this Regulation should enter into force

immediately

(ii) MT: afin de garantir que les mesures prévues dans ce règlement

sont efficaces , ce règlement doit entrer en vigueur immédiatement

,

(iii) STS Score: 4.46

Results:

Our results are summarised in Table 4.2, which shows that the MAE for the com-

bined features (QuEst + STS features) is considerably lower than that of QuEst on

its own. A lower MAE indicates a lower error rate, and therefore higher accuracy.

This means that the additional use of STS features can improve QuEst’s predic-

tive power. Even the 3 STS features on their own outperformed QuEst’s baseline

features. These results show that our method can prove useful in a context where

semantically similar sentences are accessible.

Table 4.2: Predicting the S-Bleu scores for DGT-TM - Mean Absolute Error

System MAE

QuEst Baseline (17 Features) 0.120

STS (3 Features) 0.108

Combined (20 Features) 0.090
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4.5.3 Experiments on the SICK Dataset

In order to further test the suitability of our approach for semantically similar sen-

tences, we use the SICK dataset for further experiments. The SICK dataset is

generated from existing datasets based on images and video descriptions, and each

sentence pair is annotated for relatedness (similarity) and entailment by means of

crowd-sourcing techniques (Marelli et al. (2014b)). This means that we did not need

to use the STS tool to annotate the sentences.

We extract 5,000 sentence pairs to use in our experiments and translate them into

French using the MT system described in Section 4.4.2. The resulting dataset con-

sists of 5,000 semantically similar sentence pairs and their French machine trans-

lations. Of this set, 4,500 are used to train an SVM regression model in the same

manner as described in Section 4.5.2. The remaining 500 sentences are used for

testing.

As the SICK dataset is monolingual and therefore lacking in a reference trans-

lation, we opted to use a back-translation (into English) as a reference instead of a

French translation for these results. A back-translation is a translation of a trans-

lated text back into the original language. Back-translations are usually used to

compare translations with the original text for quality and accuracy, and can help

to evaluate similarity of meaning between the source and target texts. In machine

translation contexts, they can be used to create a pseudo-source that can be com-

pared against the original source. He et al. (2010) used this back-translation as a

feature in MTQE with some success. They compared the back-translation to the

original source using fuzzy match scoring and used the result to estimate the quality

of the translation. The intuition here is that the closer the back translation is to the

original source, the better the translation is in the first place. Following this idea,

we use the S-Bleu scores of the back-translations as stand-ins for the MT quality

scores. We use the MT system described in Section 4.4.2 for the back-translations.
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Example (4) shows a sample sentence from the resulting dataset, including the

original English sentence pairs and each sentence’s MT output. The crowd-sourced

STS score for this sentence pair is 4, indicating that only minor details differ.

(4) SICK Sample Sentence

a. Sentence A

(i) Source: Several children are lying down and are raising their knees

(ii) MT: Plusieurs enfants sont couchés et élèvent leurs genoux

(iii) Backtranslation: Many children are in bed and raise their knees

b. Sentence B

(i) Source: Several children are sitting down and have their knees

raised force

(ii) MT: Plusieurs enfants sont assis et ont soulevé leurs genoux

(iii) Backtranslation: Several children sit and have raised their knees

c. STS Score: 4

Results:

Results on the SICK datasets are summarised in Table 4.3. The lowest error rate

(MAE) is observed for the system that combined our STS-based features with the

QuEst baseline features (Combined (20 Features)) just as in the DGT-TM experi-

ments. We observe that even the STS features on their own outperformed QuEst in

this environment.
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Table 4.3: Predicting the S-Bleu scores for SICK - Mean Absolute Error

System MAE

QuEst Baseline (17 Features) 0.200

STS (3 Features) 0.189

Combined (20 Features) 0.177

The cherry-picked examples in Table 4.4 are from the SICK dataset, and show that

a high STS score between the source sentences can contribute to a high prediction

accuracy. In both examples, the predicted score for Sentence A is close to the actual

observed score.

Table 4.4: SICK Sample Prediction

Sentence A Sentence B

Source Dirt bikers are riding on a trail Two people are riding motorbikes

MT Dirt Bikers roulent sur une piste Deux personnes font du vélo motos

S-BLEU: 0.55 (Predicted) 0.84

0.6 (Actual)

STS 3.6

Source A man is leaning against a pole A man is leaning against a pole

and is surrounded and is surrounded by people

MT Un homme est appuyée contre un Un homme est appuyée contre un

poteau et est entouré par des gens poteau et est entouré

S-BLEU: 0.91 (Predicted) 0.91

1 (Actual)

STS 4.2

Furthermore, when we filtered the test set for the SICK experiments for sentences

with high similarity (4+), we observed an even higher drop in MAE, as demonstrated
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in Table 4.5. This suggests that our experiments perform especially well if we select

for sentences with high similarity, as we would expect.

Table 4.5: Predicting the S-Bleu scores for SICK sentences with high similarity -

Mean Absolute Error

System MAE

QuEst Baseline (17 Features) 0.20

Combined (20 Features) 0.15

4.5.4 The FLICKR EN-FR Dataset

While BLEU is widely used to evaluate MT systems today, it still has severe short-

comings when it comes to correlating with human judgement. This severely hinders

the performance in the experiments, which rely heavily on sentence-level BLEU

scores to evaluate our system.

In order to address these short-comings, we run experiments mirroring those run

on the DGT-TM corpus on the new dataset that we designed (c.f. Section 4.4.5).

We use 200 randomly chosen sentences as a test set, and use the remaining 800

sentences to train our machine learning system.

As the quality scores for the dataset we designed are discrete (1-5) as opposed

to the continuous S-BLEU scores used in previous experiments, we therefore use a

SVM classifier rather than a regressor, hoping to more accurately predict our results.

Our system is trained to classify sentences into one of 5 different categories, from 1

– 5. Our results show that the addition of the STS-related features can improve our

predictions marginally over those of the QuEst baseline features. Table 4.6 shows a

5% increase for Baseline+STS features over the Baseline alone.
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Table 4.6: Classification Accuracy for New Dataset

QuEst Baseline Baseline + STS

Accuracy 40% 45%

4.6 Conclusion

In this chapter, we sought to answer the first of our research questions (RQ1): Is it

possible to evaluate the quality of a translated sentence for which we do not have a

reference translation, based on the level of semantic relatedness between itself and

a different sentence for which we do have a reference translation? We devised and

presented our method to apply semantic textual similarity to machine translation

evaluation, using semantically similar sentences and their quality scores as features

to estimate the quality of machine translated sentences.

To that end, we introduced 3 semantically motivated features that use a pre-

viously evaluated semantically similar sentence, and use these features to augment

QuEst’s baseline features. After some preliminary experiments, we tested our ap-

proach on three different datasets: The DGT-TM, the SICK dataset, and a dataset

of our own design based on FLICKR images. The latter we put together by translat-

ing semantically similar sentence pairs and evaluating the MT output. The results

show improvements over the baseline for all 3 datasets, especially when selecting

for high STS sentences. The results are encouraging, showing that these features

can improve over the baseline when a sufficiently similar sentence against which to

compare is available. We conclude that this approach can be quite useful in settings

where we wish to predict the quality of sentences within a very specific domain.
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Chapter 5

Quality Estimation in the

Translation Workflow: A User

Study

5.1 Introduction

In previous chapters we investigated the impact of STS on MTQE and its ability to

improve the prediction of MT quality. In this chapter, we investigate the real-world

applications of this method and attempt to answer RQ2.

RQ2 To what extent does the use of quality estimation tools affect the efficiency of

the translation workflow?

To address this issue, we designed a user study that attempts to successfully

integrate MT Quality Estimation into real-life translation workflows. We employed

a traffic light system to present translators with different categories of sentences

and determine how effective MTQE is at improving the efficiency of the translation

workflow. We engaged 4 different professional translators in this task, and measured
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the translators’ productivity in different scenarios: translating from scratch, post-

editing without using MTQE, and post-editing using MTQE. Our results show that

MTQE information, when accurate, improves post-editing efficiency.

The remainder of this chapter is structured as follows: the next section, Sec-

tion 5.2, presents some background information that motivates our design decisions

throughout this chapter. Section 5.3 describes the preparation and construction of

the dataset used in the user study. Section 5.4 describes the user study and provides

the details of the traffic lights system. It also presents an analysis and a discussion

of the results obtained. Finally, Section 5.6 sums up our findings in this chapter.

5.2 Background

In recent years, Machine Translation Post-Editing (MTPE) has become more widely

used in the translation industry (Zaretskaya et al., 2015; Schneider et al., 2018). In

light of this developement, assessing the quality of the MT becomes a more pressing

concern. Poor quality MT might end up being more trouble than it is worth, costing

a post-editor more time as they assess and rewrite a non-viable suggestion. Many

professional translators have acknowledged that consistent low-quality MT can be

frustrating, and can lead them to give up on post-editing entirely. Therefore, we

posit that a system that assesses the quality of the MT suggestion before it presents it

to the translator can help cut down on the time and effort involved for the translator.

Machine Translation Quality Estimation (MTQE) can provide this assessment and

help the post-editor by proposing for post-editing only sentences which are good

enough.

In Section 2.3.3, we presented the concept of reference-free translation and specif-

ically MTQE. QE in MT aims to predict the quality of the MT output without using

a reference translation (Blatz et al., 2004; Specia et al., 2011). This field has re-
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ceived extensive interest from the research community in recent years, resulting in

the proposal of a number of machine learning methods that estimate the quality of a

translation on well defined data sets, but which do not necessarily reflect the reality

of professional translators. In order to integrate MTQE successfully in translation

workflow, it is necessary to know when a segment is useful for a translator. However,

and as pointed out by Turchi et al. (2015), “QE research has not been followed by

conclusive results that demonstrate whether the use of quality labels can actually

lead to noticeable productivity gains in the CAT framework”.

Some attempts to investigate the impact of MTQE in post-editing. In a study

similar to ours, Turchi et al. (2015) explored whether the use of quality labels can

actually lead to noticeable gains in productivity. The authors presented translators

with binary quality labels (green to post-edit and red to translate). They used

HTER, which we introduced in Section 2.3.1, to determine the labels. The authors

denoted a Hter of 0.4 as the boundary between post-editing and translating from

scratch, prompting post-editors to discard suggestions with a score under 0.4, and

to post-edit suggestions with a score over 0.4 The authors used a modified Mate-

Cat (Federico et al., 2014), adapted to provide a single MT suggestion, and a red

or green label. They used sentences from an English IT user manual, which they

translated into Italian using a PBSMT system, Moses (Koehn et al., 2007). They

then post-edited these translations and generated the Hter scores. Their dataset

consisted of 1,389 segments, of which 542 were used to train the MTQE engine, and

were used for testing. In total, they gathered two instances of each segment, one

for the scenario in which the translator was shown the MTQE label, and one in

which the translator was not shown the MTQE label. While they observed a slight

increase in productivity of 1.5 seconds per word, they concluded that this increase

is not statistically significant across the dataset. However, further investigation of

their data showed a statistically significant percentage of gains for medium-length

suggestions with HTER>0.1.
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Moorkens et al. (2015) investigated the extent to which human estimates of post-

editing effort predict actual post-editing effort. They also researched how much the

display of MTQE scores influenced post-editing behaviour. The authors used two

different groups of participants: The first group consisted of six member of staff,

postdoctoral researchers and PhD students of a Brazilian University. The second

group consisted of 33 undergraduate and Masters translation students. The first

step of the study involved asking the first group of participants to assess the quality

of a set of 80 segments of two Wikipedia articles. These articles described Paraguay

and Bolivia and were Machine Translated into Portuguese using Microsoft’s Bing

Translator. They were asked to classify the MT output according to a 3-grade scale:

1. Segments requiring a complete retranslation;

2. Segments requiring some post-editing but for which PE is still quicker than

retranslation; and

3. Segments requiring little or no post-editing.

The second step of the study took place after a break of at least 2 weeks, in order to

allow the participants time to forget their original ratings. The same participants

were asked to post-edit the same segments, without showing any type of MTQE

information. In the final step of the study, the authors asked the second group of

participants (undergraduate and masters students) to post-edit the same sample.

This time, however, they included the MTQE information gathered the first step.

Although their study is based in a rather small sample, their findings suggest that

“the presentation of post-editing effort indicators in the user interface appears not

to impact on actual post-editing effort”.

In the following year, Moorkens and Way (2016) published a second study com-

pared the use of translation memory (TM) with that of MT among translators.

They engaged 7 translators and asked them to rate 60 segments translated from
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English into German. The text was taken from two sources with similar domains:

the documentation of the an open-source computer-aided design program called

FreeCAD, and from the Wikipedia entry describing what computer-aided design is.

The authors found that low- and mid-ranking fuzzy matches that are presented to

translators without scores, only serve to irritate the translators. Furthermore, the

translators found over 36% of such instances useless for their purposes. In contrast,

MT matches were always found to be have some utility. Moorkens and Way (2016)

concluded that their findings suggest that “MT confidence measures need to be de-

veloped as a matter of urgency, which can be used by post-editors to wrest control

over what MT outputs they wish to see, and perhaps more importantly still, which

ones should be withheld”.

In their more recent study, Moorkens and O’Brien (2017) attempt to determine

the specific user interface needs for post-editors of MT through a survey of trans-

lators. The authors report that 81% expressed the need for confidence scores for

each target text segment from the MT engine. This finding validates the impact of

our study, as we specifically aimed at investigating the impact of showing MTQE

to translators when undergoing MTQE tasks.

Teixeira and O’Brien (2017) investigated the impact of MTQE on the post-

editing effort of 20 English to Spanish translators post-editing 4 texts from the

WMT13 news dataset. They used four types of scenarios: No MTQE, Accurate

MTQE, Inaccurate MTQE, and Human Quality Estimation. In contrast to our

work, the Quality Estimation data was gathered using the direct assessment method

proposed by Graham et al. (2015). Their goal was to determine the impact of the dif-

ferent modes of MTQE on the time spent (temporal effort), the number of keystrokes

(physical effort) and the gaze behaviour (cognitive effort). Their results showed no

significant differences in terms of cognitive effort. In the case of the average number

of keystrokes used or time spent across the different modes of MTQE, there were

no significant differences per type of MTQE. However, there were significant differ-
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ences when the MTQE score level was higher (the higher the score level, the less

time was spent and fewer keys were typed regardless of the MTQE type). They

concluded that displaying MTQE scores was not necessarily better than displaying

no scores. As we outline later in this chapter, these results contradict our findings,

which strongly suggest that MTQE information has a positive effect on reducing the

time and effort involved in post-editing.

Our user study followed in the footsteps of these studies, with two major differ-

ences. We used FMS instead of more traditional MT evaluation metrics as transla-

tors are more used to work with TM leveraging and fuzzy matches (Parra Escart́ın

and Arcedillo, 2015b,a). More significantly, however, our study attempted to iden-

tify the difference between the effects of good and accurate MTQE, versus that of

mediocre or even inaccurate MTQE.

5.3 Machine Translation Quality Estimation

In Section 2.3.3, we introduced the concept of MTQE and how it estimates the

quality of machine translation output without the need for a reference translation.

In Chapter 4 we explained our method for integrating STS into MTQE and reported

the results based on 3 sets of experiments. In those experiments, quality can be

defined differently based on the task at hand. In this chapter, we consider quality

related to fuzzy match score (FMS) in line with the findings of Parra Escart́ın and

Arcedillo (2015b,a) who identify a correlation between the editing effort and FMS.

For this reason, our MTQE system will predict the FMS between the automatic

translation of a sentence, for which the quality needs to be assessed, and its correct

translation, without having access to this correct translation.
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5.3.1 Autodesk data

In April 2015, Autodesk announced the release of the Autodesk Post-Editing Data

corpus. It consists of parallel data where English is the source language and there are

up to 12 target languages (simplified and Traditional Chinese, Czech, French, Ger-

man, Hungarian, Italian, Japanese, Korean, Polish, Brazilian Portuguese, Russian

and Spanish). The size per language pair varies from 30,000 segments to 410,000

and each segment is labeled with information as to whether it comes from a TM

match or it is MT output. The post-edited target sentences are also included in

the dataset. The data belongs to the technical domain, and the segments come

predominantly from software manuals.

This corpus was released with MTQE tasks in mind. The fact that it is publicly

available makes it a very good choice for our study, as it includes FMS which can

be used to train our MTQE. In addition it is domain-specific making it appropriate

for our user study where we try to replicate the conditions in which professional

translators normally work.

For training and testing our MTQE system, we randomly selected 5,500 sen-

tences: 5,000 sentences were used to train our system, and the remaining 500 sen-

tences were kept for testing.

5.3.2 Evaluation of MTQE

We trained three different systems: In the first system, we used the 79 features

extracted using QuEst++ (c.f. Section 4.4.1) with its default language resources

and without any additional semantic information provided by our STS method (c.f.

Section 4.3). For the second system, we tuned QuEst++ to our dataset by replacing

some resources with Autodesk-specific data. We replaced both the English and

Spanish corpora with 67,030 sentences from the Autodesk Translation Memory data.
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We also built a new Language Model and vocabulary file using this aligned corpus.

This tuned QuEst++ to our specific domain and, as the results show, improved the

performance of the baseline features.

The third system was the domain tuned version of QuEst++ (second system)

enhanced with our STS features. In order to calculate these features, we searched

the remaining unused sentences in the Autodesk dataset for sentences with a high

similarity to the 5,500 randomly chosen dataset. The results are summarized in

Table 5.1.

Table 5.1: MAE predicting the FMS for Autodesk

System Description MAE

QuEst++ – out of the box 9.82

QuEst++ – tuned for in-domain data 9.78

QuEst++ – with STS features 9.52

The results summarized in Table 5.1 show that QuEst++ performs at better when

tuned for the specific dataset and augmented with STS features. However, this tells

us little about how useful these predictions would be in an industrial setting. In order

to understand the impact of these predictions, we replaced the FMS with a binary

label that would tell the translator whether they should post-edit or translate from

scratch. We choose a FMS of 75 or higher to be the threshold for post-editing, as

per the findings of Parra Escart́ın and Arcedillo (2015a). The resulting predictions

matched up with the observed labels 85% of the time. In a real-world setting,

we posit that this accuracy would be of great use to translators and would speed

up the process translation process. However, the extent to which this improves

the efficiency of the post-editing process would need to be observed in a controlled

environment with actual translators

We took a closer look at the cherry-picked examples from the Autodesk test
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set. Examples (1), (2) and (3) show the prediction matching quite closely with

the observed FMS. In the first two cases, MTQE would advise the translator to

post-edit rather than translate from scratch, and in both cases it is the correct

course of action judging by the observed FMS. In example (2), the word “según”

is functionally equivalent to the phrase “en función de”, and the change itself is

a stylistic choice on behalf of the post-editor. In this example, the observed FMS

would have been closer to the predicted FMS if not for this choice. In the case

of Example (4), the predicted score seems to differ wildly from the observed score,

with the predicted score suggesting to the translator that they should post-edit,

while the observed FMS suggests they should translate from scratch. On closer

examination, we see that the Spanish MT translation has all the words in the wrong

place, and although the sentence is grammatically correct, the structure itself is

wrong. Therefore, while the predicted score is too high, the observed FMS does not

properly reflect the PE effort either.

(1) Sample Prediction 1 - Good QE

a. Source: To Navigate the Marking Menu Selections.

b. MT: Para navegar por las selecciones del menú de comandos frecuentes

c. PE: Para desplazarse por las selecciones del menú de comandos fre-

cuentes

d. FMS: 88.661 (Predicted)/88.000 (Observed)

(2) Sample Prediction 2 - Good QE

a. Source: Stylizes each point based on the normal of the point

b. MT: Stylizes cada punto según la normal del punto.

c. REF: Aplica un estilo a cada punto en función de la normal del punto.

d. FMS: 87.03 (Predicted)/85 (Observed)
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(3) Sample Prediction 3 - Good QE

a. Source: Create better buildings with intelligent 3D model–based design.

b. MT: Crear mejores edificios con modelos 3D avanzados basados en diseño.

c. REF: Cree mejores construcciones gracias al diseño basado en modelos

3D. 0 54 59.9523

d. FMS: 59.95 (Predicted)/54 (Observed)

(4) Sample Prediction 4 - Bad QE

a. Source: For example, intensity, normal, abstractname or classification

data may not be available with a point cloud.

b. MT: Por ejemplo, la intensidad, normal o datos de clasificación pueden

no estar disponibles con una nube de puntos.

c. REF: Por ejemplo, es posible que los datos abstractname de intensidad,

normales o clasificación no estén disponibles en una nube de puntos

d. FMS: 90.88 (Predicted)/55 (Observed)

5.4 The User Study

5.4.1 PET: Post-Editing Tool

For our study we used PET15 (Aziz et al., 2012) as our post-editing tool. Like

other CAT tools, PET provides an easy to use user interface which facilitates both

translating and post-editing. In addition, the tool records a number of statistics

such as the keystrokes pressed and the time needed to perform the translation,

which are very relevant for this research. Even though PET is not normally used in

a real-world professional post-editing situation, it is ideal for acquiring data like the

ones collected for our research. The tool is open-source and written in Java, which

15http://www.clg.wlv.ac.uk/projects/PET/
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allowed us to easily modify the code to incorporate the traffic light system described

in Section 5.4. While other tools such as SDL Trados Studio16 or MemoQ17 would

have been preferred by the translators due to familiarity, these tools did not allow

the same kind of malleability and customisation as PET, which allowed us access to

the source code in order to edit in our traffic lights.

Figure 5.1 shows a screenshot of the out-of-the-box unedited PET interface. The

bottom yellow box shows the current sentence to be translated on the left and the

MT suggestion on the right. The top yellow box is for the translator to edit.

  

Figure 5.1: A Screenshot of PET out of the box

5.4.2 Settings of the User Study

We designed a traffic light system using PET to present translators with three dif-

ferent categories of sentences. The translators were presented with sentences (in

English) to translate into Spanish. Some of these sentences had MT suggestions

16http://www.sdl.com/solution/language/translation-productivity/trados-studio/
17https://www.memoq.com/en/
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Figure 5.2: Translate from scratch

  

to post-edit. All sentences were presented with one of four traffic lights, detailed

in Table 5.2). A light yellow background indicated that a translator must trans-

late the given sentence from scratch (in this case, the translator will not be given

an MT translated sentence to post-edit). A light blue background indicated that

a machine translation is available, however, no MTQE information is forthcoming,

and therefore the translators must decide for themselves whether to translate from

scratch, or to post-edit. A light green background indicated that the MTQE system

strongly suggests that the translator post-edit the sentence. This meant that the

MTQE system has predicted a fuzzy match score of 75 or more. Finally, a light

red background indicates that the MTQE system strongly suggests that the trans-

lator translates the sentence from scratch. This meant that the MTQE system has

predicted a fuzzy match score of less than 75.

Figures 5.2 and 5.3 show how the colour coding system was displayed to the

translators.
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Figure 5.3: Post-edit without MTQE

  

Table 5.2: A summary of the traffic light system.

Light yellow No MT suggestion.

Light blue No Quality Estimation, the Post-editor must make up their own

mind.

Light green The Quality Estimation recommends post-editing rather than

translating from scratch.

Light red The Quality Estimation recommends translating from scratch

rather than post-editing.

The categories above were determined on the basis of the predicted MTQE scores.

We know that some of these scores are not correct. For this reason a different way

of looking at the data is to divide it into four categories: No MT, No QE, Good QE

and Bad QE. These categories are summarised in table 5.3. In the first category,

“No MT”, the translator was not presented with an MT suggestion to post-edit, and

must therefore translate from scratch. In the “NO QE” category, the translator was

provided with a MT suggestion, however, there is no MTQE suggestion, so they must

make up their own mind whether or not to post-edit. The “Good QE” and “Bad
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QE” categories both provided a MTQE suggestion to the translator, prompting them

either to post-edit or translate from scratch. However, the “Good QE” category was

made up of sentences for which the MTQE system predicted a FM score close to

the observed FM score (within 10% of the observed score). The “Bad QE” category

consisted of sentences where the MTQE system did not perform as accurately, and

suggested a score that diverged from the observed FM score. The user was not told

which sentences were “Good QE” and which are “Bad QE”. This data is known only

to the researchers. We hoped that this categorisation would show us the effect of

good and accurate MTQE specifically on the time and effort of the post-editor.

Table 5.3: Data Categorisation

Label Description

NO MT No MT suggestion.

NO QE MT Suggestion but no MTQE suggestion

Good QE MTQE suggestion within 10% of observed FM score

Bad QE MTQE suggestion more than 10% different to observed FM score

5.4.3 The Pilot Study

We performed a pilot study with 3 non-professional translators who are native speak-

ers of Spanish. These translators were asked to look at a subset of 40 sentences from

the full dataset. All 3 translators are native speakers of Spanish with at least a work-

ing proficiency of English. Despite their years of translating experience, none of the

translators had any experience with technical texts and manuals. None of the trans-

lators were familiar with PET before participating in the experiment, and were not

paid for their time. The purpose of the pilot was to identify potential problems the

translators might run into, and we did not expect usable results from such a small

dataset.
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We extracted the post-editing times and keystrokes for all 3 translators. We

normalised these results by dividing the time by the number of words in the source

sentence. We also discarded one sentence, sentence number 4, because the post-

editing time exceeded 9000 seconds. In cases where a translator skipped a sentence,

we discarded their statistics as well.

Figure 5.4 shows the time in seconds each annotator spent on a given category of

sentences (No MT, No QE, Good QE and Bad QE). As we expected, the sentences

that needed to be translated from scratch took the most time across all annotators,

showing that even among translators with no previous post-editing experience, MT

can considerably boost translator efficiency. However, on first glance it does not

seem that the inclusion of MTQE improves efficiency to any significant degree. This

may be because only half of the MTQE included is accurate.

Figure 5.4: Number of seconds per word spent translating/post-editing per category

We also took a look at the results broken down by quality of MTQE rather than cat-

egory. However, the difference between No QE and Good QE was small. It remained

difficult to draw conclusions from such a small dataset. While the use of Good QE

seemed to be overall preferable to Bad QE, there was no statistically significant or
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consistent improvement in translator efficiency between using MTQE or simply giv-

ing the translator the choice to post-edit or translate. This could be due to several

factors. The translators themselves were not familiar with post-editing, which may

have affected the results. Furthermore, Autodesk’s MT system seems to perform

pretty well, leading to very little editing of the suggested machine translation. Fi-

nally, we used only 40 total sentences in the pilot study (10 per category) which

may be the contributing factor for our inconclusive results. Despite these inconclu-

sive results, the pilot study fulfilled its purpose to test the experimental setting and

confirm that the instructions provided were clear and no unforeseen issues arose.

5.4.4 The Full Study

For the purpose of the full study, our total sentences number 260 (about 3,000

words). This number represents a day’s work for the average professional translator.

This allows us to emulate a real-world setting by asking the translators to complete

the task in one day. We divided the annotated data into the 4 categories according

to Table 5.3 and randomly selected 65 sentences from each of the 4 categories, to

get a total of 160 sentences.

We enlisted the help of 4 professional translators with several years’ English-

Spanish translating experience. The years of experience varied greatly, between 3

and 14 years experience. All 4 translators had some experience with Post-Editing

tools. All 4 translators are native speakers of Spanish with a working proficiency

of English and were asked to fill out questionnaires before and after completing

the tasks with the aim of gathering information about their background and their

experience while performing the task. Table 5.4 summarises the translator details.
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Table 5.4: Translator Summaries

Translator C M V S

Experience in technical domains (years) 14 6 3 6

Experience as a professional translator (years) 14 6 3 9

Experience with post-editing tools (years) 2 4 3 1

Opinion of Computer-Assisted Translation tools + + + +

Opinion of post-editing tasks - + + +

While all translators had some experience with post-editing tools, none of the trans-

lators were familiar with PET before participating in the experiment. To overcome

this issue, together with the instructions to carry out the task for the experiment,

we also provided them with a short user manual of the tool with screenshots aiming

at familiarising them with the interface prior to the task itself. All translators were

paid for their time and were asked to complete the task over the course of a day, in

order to simulate the real-world experience.

5.5 Results and Analysis

PET records all the operations carried out by the translators. These operations are

saved in an XML file which in turn can be used to analyse the translation process.

This section is structured as follows. It first presents an analysis of the productivity

of the translators measured using time and number of keystrokes (Section 5.5.1). The

effect of good and bad MTQE information on the post-editing is analysed in Section

5.5.2, whilst the effect of the FMS on the post-editing information is presented in

Section 5.5.3. The same sentences were shown to translators. We compare the

resulting translations in Section 5.5.4. The section finishes with discussion of the

translators’ feedback.

107



5.5.1 Analysis of Productivity

We extracted the post-editing times and keystrokes for all 4 translators. We then

normalised these results by dividing each by the number of tokens in the source sen-

tence in order to compare sentences of different lengths. In cases where a translator

skipped a sentence, we discarded the statistics for that sentence. In such cases,

we discarded the sentence data for all translators, in order to ensure the results

remained comparable. In total, we discarded 4 sentences this way.

Figure 5.5 shows the time, measured in seconds per word, that each translator

spent on a given type of task translating from scratch – “No MT ”; raw post-editing

– “No QE”; and post-editing with MTQE information – “QE”). Each translator is

identified by a letter. In addition, we provide the average for all four translators.

As we expected, the sentences that needed to be translated from scratch took the

most time across all translators, even without taking into account the quality of the

QE. This seems to suggest that MT can considerably boost translator efficiency.

The sentences that needed to be translated from scratch took the most time across

all annotators, MTQE can considerably boost translator efficiency. This in itself

is not an unexpected result, as MT is widely used in the Post-Editing workflow

to reduce the translating effort. However, the more interesting results, for us, are

the differences between post-editing with MTQE and without MTQE. We take a

closer at the bars marked “No QE“ and those marked “QE”. The normalised (by

sentence length) number of seconds drops from an average of 2.9 seconds to 2.4.

This indicates that MTQE cuts post-editing time by an average of 0.5 seconds per

word on average. Individually, however, this drop does not account equally over

each translator. For two of the translators, the change is not significant. We will

discuss the possible causes for this in Section 5.5.5.
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Figure 5.5: Number of seconds per word spent translating/post-editing

Figure 5.6 analyses the activity of translators from the point of view of the number

of keystrokes per word, based on the type of task (translating from scratch – “No

MT ”; raw post-editing – “No QE”; and post-editing with MTQE information –

“QE”). This helps us measure the physical effort in addition to the temporal one.

As expected, the number of keystrokes used in the “No QE” and “QE” conditions

in Figure 5.6 is clearly lower than the number of keystrokes used when translating

from scratch. The same carries over when measuring the difference in keystrokes

for post-editing with and without MTQE. The average number of keystrokes drops

from 3.67 for “No QE” to 2.25 for “QE”. This suggests that the inclusion of MTQE

cuts post-editing effort by 0.4 keystrokes per word.

The reduction of the number of keystrokes between the setting where no auto-

matic translation is provided and those where a translation was available is much

greater than the reduction of the time between the same settings. This is to be ex-

pected given that even when a good automatic translation is available, translators

need to spend time to read it and assess its quality.
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Figure 5.6: Number of keystrokes per word spent translating/post-editing

5.5.2 The Effect of “Good QE” vs “Bad QE” on Post-

Editing

Our results so far do not fully reflect a real-world setting, as we have artificially

increased the sentences with low quality MTQE by selecting 50% of the sentences

with the “Bad QE” category. However, in our test, we observed an 85% accuracy of

MTQE labels. Therefore, a fully random selection would have resulted in about 15%

of the sentences falling into the “Bad QE” category instead. However, we wanted

to study the impact that MTQE accuracy can have on post-editing effort. Table 5.5

shows the number of sentences in each category once divided by quality of MTQE

and after the non-viable segments were discarded.
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Table 5.5: Data Categorisation and Number of Sentences by Quality of MTQE

Label Description N

NO PE No MT suggestion. 65

NO QE MT Suggestion but no QE suggestion 63

Good QE MTQE suggestion within 10% of observed FMS 63

Bad QE MTQE suggestion more than 10% different to observed FMS 65

Figure 5.7 shows the time, measured in seconds per word, that each transla-

tor spent on a given type of task depending on the accuracy of the MTQE. Each

translator is identified by a letter. In addition, we provide the average for all four

translators. We also provide the results for the “No QE” category, for comparison.

In terms of time spent post-editing, there is no significant difference between the

“Good QE” and “Bad QE” categories on average. Only one translator showed any

improvement between the two categories, this is Translator “S”. For both Transla-

tor “C” and Translator “M”, the results show no significant difference regardless of

the accuracy of QE. For Translator “V”, there was an increase in both time and

effort between “Good QE” and “Bad QE”. Figure 5.8 shows the same breakdown

for keystrokes instead of time. Once again, on average there is little to no difference

between “Good QE” and “Bad QE”. Here Translator “V” seems to reuse segments

tagged as “Bad QE” more than others, as does Translator “C”, though to a much

less significant extent. These erratic and strange results led us to take a closer look

at the range of FMS for these individual sentences.
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Figure 5.7: Number of seconds per word spent translating/post-editing

Figure 5.8: Number of keystrokes per word spent translating/post-editing

5.5.3 The Effect of the Fuzzy Match Scores on Post-Editing

Effort

Table 5.6 shows a breakdown of the number of sentences by FMS range and the

labels shown to translators (Post-edit or Translate). Of the sentences labelled as
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post-edit, about two thirds (58 out of 82) are labelled correctly (i.e. the label

predicted by the MTQE system matches that extracted from the the observed FMS

score) and only 24 are labelled incorrectly. Conversely, among the 46 sentences

labelled translate, the opposite is true. 33 sentences are labelled incorrectly, and

only 13 are labelled correctly. According to the findings of Parra Escart́ın and

Arcedillo (2015b), sentences with FMS <=75 are not useful for post-editing. This

suggests that the high number of sentences in that range may have impacted the

number of keystrokes observed in the previous section.

Table 5.6: Number of Sentences by Range

FM Range <=75 (75-100] Total

Post-edit 40 42 82

Translate 21 25 46

Therefore, we divide the sentences in our data into four categories:

• GoodQE Translate: (21 sentences) The observed FM score is <75, and the

user is given a red light.

• GoodQE Post-edit : (40 sentences) The observed FM score is >75, and the user

is given a green light.

• BadQE Translate: (42 sentences) The observed FM score is >75, and the user

is given a red light.

• BadQE Post-edit : (25 sentences) The observed FM score is <75, and the user

is given a green light.

In this section, we organised the sentences by their observed Fuzzy Match scores.

The “Good QE” and “Bad QE” categories indicate whether the translator was given

the correct or incorrect prompt. For comparison, we also include the “No QE” cat-

egory as a control group. We also include the average over all 4 translators for each
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category. Figure 5.11 shows the normalised time for each translator spent on sen-

tences with FMS scores <= 75. Here a correct label (“Good QE”) would indicate

translating from scratch, and an incorrect label (“Bad QE”) would indicate attempt-

ing to post-edit. On average, it seems that in the case of these particular sentences,

attempting to post-edit still cut down the time and effort (overall), despite the low

quality of the machine translation. This is especially pronounced for Translator “V”

and Translator “S”. This might indicate that these translators were more likely to

follow the traffic lights’ suggestion.

Things are much less defined in the case of translations with higher FM scores,

however. Here, the MTQE suggestions have a less significant impact on translator

time and effort. Figure 5.9 shows the normalised time spent post-editing sentences

with a FMS > 75. With the exception of Translator “S”, none of the translators

show a significant difference in time between “Good QE” and “Bad QE”. The same

can be observed for effort in Figure 5.10.

Despite the indication that the quality of MTQE does not strongly affect the

time and effort spent post-editing, it does seem that ‘‘Good QE’’ still improves over

“No QE”. This is especially true for sentences with a FMS <= 75. This seems to

suggest that MTQE is most helpful in cases of low MT quality, where the decision

to post-edit or translate from scratch is difficult. This is also in line with Turchi

et al. (2015), who found that the improvements in efficiency are only statistically

significant for instances where HTER>0.1.
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Figure 5.9: Normalised Time Sentences with FMS scores > 75

Figure 5.10: Normalised Keystrokes Sentences with FMS scores > 75
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Figure 5.11: Normalised Time for Sentences with FMS scores <= 75

Figure 5.12: Normalised Keystrokes for Sentences with FMS scores <= 75

5.5.4 Quality of Translation

In order to find out whether there are differences between the resulting translations,

we take a look at the FMS scores of the translators’ sentences, comparing them to

the post-edited reference provided by Autodesk. In the context of this paper, we
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report the results using FMS for comparison in Table 5.13. In addition to FMS, we

also take a look at the Bleu scores in Table 5.14.

We find that despite their varying levels of experience, all 4 translators achieved

fairly high scores. We found that the FMS scores vary the most for the “No MT ”

category, with an average standard deviation of 7.6. This result is expected, as

we expect the results to vary the most when the translators do not have an MT

suggestion as a starting point. Furthermore, they are not Autodesk usual translators

and are not familiarised with the terminology and style required by Autodesk. As

their MT engine is deployed in-house, it is expected that it mimics the style of their

translators and uses the right terminology.

Figure 5.13: FMS scores for post-edited sentences
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Figure 5.14: Bleu scores for post-edited sentences

5.5.5 Analysis of the Translators

In Table 5.4, we summarised the translators’ years of experience both as professional

translators and post-editors. When we compare these findings to the results in

Figure 5.5, we find a negative correlation between the years of experience and the

time spent both translating and post-editing. The exception is Translator “S”, who

despite 9 years as a professional translator, spends over twice as much time per

word as the rest of the translators. This could reflect the lack of experience that

Translator “S” possesses in terms of post-editing tools. Despite the discrepancy in

time, the keystrokes of Translator “S” do not seem to vary that much from the rest of

the translators in terms of effort (keystrokes in Figure 5.6). This lends more weight

to the theory that the time spent getting familiar with the PET tool is responsible

for the additional time observed in the results.

We asked all the translators to fill out questionnaires before and after the task

in order to gain a more first-hand perspective of translators and post-editing tools.

Responses suggest that while all four translators approved of the MT suggestions,
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all found the Post-editing Tool difficult to navigate, which may have affected both

their results and opinions of Quality Estimation. Despite the results above, three

of the translators answered that they did not find Quality Estimation helpful. One

translator disagreed, saying that they liked getting a first impression via the traffic

lights system. Three out of the four translators claimed that the MT suggestions

were helpful, while one insisted that they were better off translating from scratch.

Despite their impressions, the results show that the translators did benefit from

MTQE. Translator “S” especially benefits from MTQE information, cutting down

his time from 4.9 to 3.7 when MTQE information was included. And while translator

“V” did not gain much in terms of time, MTQE-informed post-editing cut down the

effort (in terms of keystrokes) by 1 keystroke per word.

Table 5.7: Professional Translators and their Opinions after the Study

Translator Opinion C M V S

Professionalism of Task Yes No Yes No

MT Quality Good Good Good Good

Usefulness of QE Bad Bad Good Bad

Accuracy of QE Bad Bad Good Bad

Opinion of Quality Estimation Negative Negative Positive Negative

5.6 Conclusion

In this chapter, we set out to answer the research question RQ2:

RQ2 To what extent does the use of quality estimation tools affect the efficiency of

the translation workflow?

We designed and implemented a user study to investigate the impact of using MTQE

information in the post-editing workflow. To achieve this, we ran a study us-
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ing 260 sentences from the Autodesk Post-editing Parallel Corpus, annotated for

fuzzy matches using QuEst++ with semantic features. The semantically enhanced

QuEst++ system, trained and tuned on Autodesk data, performed quite well for our

test set. The observed MAE for the Autodesk data corpus is of 9.5 and we obtain an

accuracy of 85% for the labels Translate and Post-edit. Further to these findings, we

conducted a user study to investigate the impact of using the MTQE information

in the post-editing workflow. After a pilot study with only 40 sentences to test our

setup, we invited 4 professional translators to take part in a post-editing/translation

task, using a traffic lights system to provide MTQE information. The translators

were asked to use PET to use PET as their translation environment. We chose PET

because it records all the editing operations performed during the translation. All

four translators were paid for their work. Our results show that MTQE, especially

good and accurate MTQE, is vital to the efficiency of the translation workflow, and

can cut translating time and effort significantly. This seems to contradict the find-

ings of Teixeira and O’Brien (2017), who find no significant difference in time or

effort for post-editing for MTQE. Translator feedback still seems quite negative in

spite of this improvement, however, which suggests a better post-editing tool might

be required to win over the hearts and minds of translators. In conclusion, we have

adequately answered the question we asked in RQ2, as we have shown that MTQE

can help professional translators in the postediting process, in a real-world setting.

We have shown that MTQE helps in assessing which sentences are worth postediting

and which should be translated from scratch, and helps cut down the time and effort

of the posteditor.
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Chapter 6

Other NLP Evaluation

Applications for STS

6.1 Introduction

In the previous chapters, we showed how STS is useful for MTQE. However, STS

can be useful to a large number of NLP applications, such as information retrieval,

text summarisation and question answering, as we previously discussed in Section

2.2. This chapter explores how STS can help with evaluating text simplification

and translation memory matching and retrieval, and attempts to answer the third

research question, which we divided into two subquestions: RQ3.1 and RQ3.2.

[RQ3] Can we explore the applications of Semantic Textual Similarity further:

RQ3.1: in automatic evaluation of simplified text?

RQ3.2: in translation memory matching and retrieval?

This chapter is split into two parts. In Section 6.2, we propose and investigate the

use of STS tools for the automatic evaluation of simplified sentences. We augment
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the STS system described in Section 3.4 with features that measure the simplicity

and grammaticality of sentences in addition to meaning preservation, in order to

fully encompass the needs of the simplification system’s audience. We apply the

machine learning techniques we used in previous chapters to solve the problem of

text simplification evaluation. Our classifiers and feature sets show good results,

especially in the realm of meaning preservation.

In Section 6.3, we attempt to answer RQ3.2 by testing the STS system against

a basic edit distance for translation memory matching. Translation memories are

computer aided translation tools that work by retrieving previously translated seg-

ments, or closely matching translated segments. These segments are usually stored

in a database that is updated as users continue to translate and edit matches. The

larger the database, the more effective the translation memory is. In previous years,

translation memories (TM) have used simple edit distance and fuzzy match meth-

ods to retrieve matches. These metrics largely rely on surface form, and can miss

sentences that may be paraphrased (Gupta et al., 2015b). Therefore, a more so-

phisticated TM matching metric could theoretically improve the performance and

usefulness of a TM. We test the performance of our STS system (c.f. Section 3.4)

on TM matching and compare it to the basic edit distance metric.

6.2 Automatic Text Simplification (ATS)

ATS tools attempt to improve the simplicity and readability of texts while con-

serving the meaning of the original. ATS tools transform complex sentences into

simpler, more readable ones. Longer sentences are reduced and broken up, and made

simpler for readers with cognitive impairments, dyslexia, aphasia, autism or similar

reading difficulties. These tools are usually evaluated by measuring reading speed

and comprehension by target users (Rello et al., 2013; Fajardo et al., 2014) and by

human annotators who assess sentences in terms of grammaticality, meaning preser-
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vation, and simplicity (Woodsend and Lapata, 2011). As with human evaluation

of machine translation output, this remains costly and time consuming. The prob-

lem of simplicity introduces further complications than that of machine translation

evaluation, as annotators must also be familiar with the specific requirements of the

target audience. Automatic evaluation can be both faster and more consistent and

can enable an assessment and comparison of ATS systems on a much larger scale.

In this section we explore the use of STS tools to evaluate the output of automatic

text simplification systems. Section 6.2.1 presents a short overview of ATS and pre-

vious methods used to evaluate them. Section 6.2.2 presents the data used in our

experiments. Section 6.2.4 presents our approach to evaluating ATS output using

STS methods. Section 6.2.5 presents our results and findings. Finally, Section 6.2.6

presents our conclusions.

6.2.1 Background

Research into ATS explored a range of different approaches that are largely indepen-

dent and methodologically distinct. These methods range from rule-based lexical

to syntactic simplifications, explanation generation, and statistical machine trans-

lation (Shardlow, 2014). In this research we focus on ATS evaluation and not on

developing our own simplification method. Therefore, we only give a brief overview

of the various methods available.

A number of rule-based approaches have been developed since 1990. In these

approaches, language processing tools such as part of speech taggers are used to

match patterns and apply the relevant rules accordingly. Rules are often hand-

crafted, and are used to split sentences’ sub-clauses or resolve pronominal anaphora

to make sentences less complex and easier to follow (Siddharthan and Mandya, 2014;

Rennes and Jönsson, 2015; Ferrés et al., 2015; Evans and Orăsan, 2019).

More recently and with the availability of more relevant resources (such as Simple
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Wikipedia, a simplified version of Wikipedia), data-driven approaches have found

their way into the field of ATS. Specia (2010) use the standard Phrase Based sta-

tistical machine translation (PBSMT) model provided by the Moses toolkit (Koehn

et al., 2007) to translate from “original” Brazilian Portuguese to “simple” Brazilian

Portuguese. The dataset contained manual simplifications aimed at people with

low literacy levels. By treating simplification as a translation problem, the original

Brazilian Portuguese sentences as the source and the simpler version as the target,

the authors were able to train a monolingual “translation” system. The system

performed well, and despite the system’s tendency to be overcautious in simplifying

sentences, was able to achieve a BLEU score of 60.75, which is usually considered a

good score when judging a translation system. The authors also perform some man-

ual evaluation to get a better idea of the system’s performance. The 20 randomly

selected sentences received an average score of 2.5 out of 3 for fluency and adequacy,

and 2.35 out of 3 for simplicity.

Coster and Kauchak (2011) use a similar approach for English, extending the

PBSMT system by adding phrasal deletion to the probabilistic translation model.

The authors train their system on a much larger corpus (124k aligned sentences),

using English Wikipedia as the source language and Simple English Wikipedia as the

target language. The authors report a BLEU score of 60.46 for this extended model.

However, this proved to be only a small improvement over the baseline (59.37),

which left all original sentences unchanged. These results motivated a deeper look

into the influence of the quality of the training data on the effectiveness of PBSMT

approaches (Štajner et al., 2015). The authors conduct upwards of 40 experiments

on Original and Simple Wikipedia texts, controlling for size of the dataset and the

extent of simplification between the original and simplified sentences. The authors

show that PBSMT approaches sacrifice fluency when they increase simplicity. The

authors conclude that the performance of these systems can be significantly improved

with a more carefully selected training set.
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This short and incomplete preview of the field of ATS gives us an inkling of

the difficulty of the ATS task. As research into these methods continues, the need

for reliable and efficient tools that evaluate these systems has become essential.

While automatic evaluation and quality estimation have become a staple of ma-

chine translation evaluation, these methods have only recently made their way into

the evaluation of text simplification. Štajner et al. (2014) investigated the appli-

cation of widely used MT evaluation metrics to the output of text simplification

systems. The authors posited that automatic MT evaluation shares many similari-

ties with automatic text simplification, and therefore the same tools can be applied

to both tasks. According to their research, many of these metrics show a strong

correlation with human judgments when applied to the evaluation of automatic text

simplification. Most significantly, Bleu (c.f. Section 2.3) shows the highest cor-

relation with human judgement for grammaticality at 0.442 Pearson. Their study,

however, has some limitations, focusing primarily on syntactic simplification which

results in considerable content reduction.

In 2016, the Language Resources and Evaluation Conference hosted a shared

task titled Quality Assessment for Text Simplification (QATS) (Štajner et al., 2016).

The aim of this workshop was to investigate the use of automatic evaluation and

quality estimation methods and their application to automatic text simplification.

The shared task asked researchers to automatically assess the output of automatic

text simplification and assign each sentence to one of three classes: “good”, “ok”

and “bad”. These scores were also divided into 4 aspects: simplicity, meaning

preservation, grammaticality, and an overall score. QATS provided two tracks:

the constrained track, which allowed participants use of the dataset provided by the

shared task organisers only, and the unconstrained track, which allowed participants

to augment the training data freely. We participated in this shared task in the

constrained track with a system that is described in Section 6.2.4.

125



6.2.2 Data

The QATS organisers provided the data for the constrained track. The dataset

consisted of 631 sentences extracted from the news domain and from Wikipedia

articles and simplified using the following systems:

• 224 sentences from EMM NewsBrief18 were simplified using the EventSimplify

TS system (Glavaš and Štajner, 2015).

• 119 sentences from Encyclopedia Brittanica were simplified using phrase-based

machine translation (Štajner et al., 2015).

• 240 sentences from English Wikipedia translated using 3 different lexical sim-

plification systems including EventSimplify (Glavaš and Štajner, 2015), a context-

aware approach described in Biran et al. (2011) and a lexical simplifier de-

scribed in Horn et al. (2014).

The sentences were then broken down into 505 for training and the remaining sen-

tences for testing. More details about the data can be found in Štajner et al. (2016).

6.2.3 Sentence Evaluation

All these sets were manually evaluated for (G)rammaticality, (M)eaning Preservation

and (S)implicity.

• Grammaticality: Measures fluency and grammatical correctness of the simpli-

fied sentence.

• Meaning Preservation: Indicates how much information is preserved after sim-

plification and how much meaning is lost.

18emm.newsbrief.eu/NewsBrief/clusteredition/en/latest.html
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• Simplicity: Indicates the readability of the sentence compared to the original

more complex version.

Based on these three criteria, each sentence was given three different scores, plus an

overall score calculated by averaging all the three other scores. The guidelines for

annotation are given in Table 6.1.

Table 6.1: Classification Guide for Automatically Simplified Sentence Pairs

Grammaticality Meaning Simplicity

Bad ungrammatical complete loss of meaning difficult to understand

OK grammatically incorrect some meaning somewhat difficult

but understandable is preserved to understand

Good grammatically correct All meaning is preserved Easy to understand

6.2.4 Our Approach

In order to capture all 3 aspects of grammaticality, meaning preservation and sim-

plicity, we incorporate 3 sets of features totalling 36 features in total.

1 Quality Estimation Features (17): In order to estimate the fluency and

grammaticality of the text, we first calculate the 17 baseline features used

in quality estimation tasks and described Section 2.3.4. For the purpose of

these features, we treat the TS dataset as a machine translation set, and its

evaluation as a MTQE problem. We treat the original sentence set as the

source language and the simplified sentences as the target. These features are

extracted using QuEst++, with out-of-the-box settings, using the packaged

resources.

2 Semantic Similarity Features (13): Similarly, we see the meaning preser-

vation problem as a semantic similarity task. As our STS features aim to
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capture how similar two sentences are, it follows that they would help decide

how much meaning is preserved. Therefore we use the system described in

Section 3.4, with the 13 STS features used in the majority of this research.

3 Simplicity Features (6): Finally, to address simplicity, we exploit the fea-

tures described in Yaneva and Evans (2015). They investigate readability,

specifically where it relates to Autism Spectrum Disorders (Jordanova et al.,

2013). According to the American Psychiatric Association, Autism Spectrum

Disorder (ASD) is a developemental disorder of neural origin, characterised

by impairment in communication. Individuals with ASD may struggle at se-

mantic, syntactic and most of all, pragmatic levels of understanding. The

authors analyse 33 readability indices and identify 6 predictors of autistic text

comprehension. The authors also apply these indices to the evaluation of auto-

matic text simplification and found them successful in discriminating between

original and simplified versions of text. The authors identify a number of read-

ability metrics that correlate with the simplicity measure. Readability metrics

are formulae for evaluating the ease of reading for texts, usually based on the

number of characters per word, word per sentences, and syllables per word.

These metrics are used to estimate how difficult a text is to read, usually on

a US grade level. Every index is a little bit different, emphasising different

aspects of text complexity. Some focus on syllable counts while others look

only at word and sentence lengths. We use the following readability measures:

• The Flesch-Kincaid Grade Level (Flesch, 1948)

This index is interpreted as the reading grade level and is calculated using

the equation described in Equation 6.1.

FKRA = (0.39ASL) + (11.8ASW )− 15.59 (6.1)

where ASL is average sentence length and ASW is the average number
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of syllables per word.

• The Automated Readability Index (ARI) (Senter and Smith, 1967)

Like the Flesch-Kincaid Grade Level, ARI produces an approximate grade

level for the reader based on the equation in Equation 6.2.

ARI = 4.71(characters/word) + 0.5(words/sentences)− 21.43 (6.2)

• The Coleman-Liau Index (Coleman, 1971)

The Coleman-Liau Index (CLI) similarly builds on the characters and

words in sentences to determine readability. It is defined in Equation 6.3.

CLI = 0.0588L− 0.295S − 15.8 (6.3)

L is the average number of characters per 100 words and S is the average

number of sentences per 100 words.

• The Fog Index (Gunning, 1952)

The FOG index is determined by selecting a paragraph of about 100

words and determining the average sentence length in the paragraph,

and adding it to the number of complex words in the paragraph. This is

further demonstrated by Equation 6.4.

FOG = 4[(words/sentences) + 100(complexwords/words)] (6.4)

where complex words are words with 3 or more syllables.

• SMOG Reading Ease (Mc Laughlin, 1969)

SMOG Reading Ease (see Equation 6.5) is determined by randomly ex-

tracting 30 sentences from the text and calculating the square root of the

number of complex words that appear in these sentences, and adding 3
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to that number. As with the FOG Index, complex words are words with

3 or more syllables.

SMOGgrade = 3 +
√
P (6.5)

where P is the number of words with 3 or more syllables in a sample of

30 sentences.

• Lix Reading Index (Bjornsson, 1968)

The Lix Reading Index was optimised for Western European languages

and is defined by Equation 6.6.

LIX = W/S + (Cx100)/A (6.6)

where A represents number of words, S is the number of sentences, and

C is the number of complex words, defined here as having more than 6

characters.

6.2.5 Results

We built a classification model which divided our test sentences into 3 different

classes:

• Sentence pairs marked “Good” were given the class “2”.

• Sentence pairs marked “OK” were given the class “1”.

• Sentence pairs marked “Bad” were given the class “0”.

We chose to run our system on the 505 sentences provided by the shared task

organisers and not augment our training set with any further simplified sentences.

We used LibSVM, and employed a three-way-classification system. We optimised
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for the values of C and γ through a grid-search which uses a 5-fold cross-validation

method, and all systems use an RBF kernel.

Results were calculated using different error and correlation techniques:

1 Accuracy: The percentage of sentences where the observed and the predicted

class are the same

2 Mean Absolute Error (MAE): The arithmetic mean of absolute differences

between the observed and the predicted classes

3 Mean Squared Error(MSE): The square root of the arithmetic mean of

squared differences between the observed and the predicted classes

Results were then compared to the baseline results, calculated using the widely used

and well-known automatic evaluation metrics Bleu, Meteor and Ter (c.f. Section

2.3.2). We use the baselines provided by the shared task organisers for comparison.

The metrics were used to calculate the sentence-based scores between the original

and simplified sentences. The results in Tables 6.2, 6.3, 6.4 and 6.5 show our sys-

tem’s performance compared to these baselines as well as their overall rank in the

shared task. Table 6.2 suggests that the strongest area our system performs in is

meaning preservation, ranking third out of 22 systems and consistently outperform-

ing the baseline metrics. This suggests that our STS features are strong predictors of

meaning preservation. This is expected as we designed the STS features to measure

the preservation of meaning between two sentences. Furthermore, it validates our

decision to use STS as a means to evaluate Automatic Text Simplification methods.

Our submission did not fare as well in other areas. While we outperform the baseline

metrics on simplicity and rank in the top third, our predictors for grammaticality

failed to outperform the baseline metrics. We also ranked last in grammaticality,

compared to the 22 systems submitted to the shared task. However, despite our

grammatical failures, our system’s overall performance remains solid, not only out-
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performing the baseline systems, but showing stronger predictive power than all

but one of the other systems submitted. Our system ranked 2 out of 22 in overall

performance.

Table 6.2: QATS results based on Meaning Preservation

Accuracy(Rank) MAE(Rank) MSE(Rank)

STS System 63.49(9) 20.63(3) 26.35(3)

Baselines

TER 66.67(3) 21.03(8) 28.10(8)

BLEU 65.08(7) 21.43(9) 27.59(6)

METEOR 61.90(13) 21.43(10) 31.25(14)

Table 6.3: QATS results based on Simplicity

Accuracy(Rank) MAE(Rank) MSE(Rank)

STS System 44.44(13) 28.17(7) 44.19(14)

Baselines

TER 8.10(16) 21.03(8) 46.23(21)

BLEU 38.10(17) 34.13(14) 45.77(18)

METEOR 35.71(19) 34.92(15) 47.47(22)

Table 6.4: QATS results based on Grammaticality

Accuracy(Rank) MAE(Rank) MSE(Rank)

STS System 41.27(22) 30.16(22) 46.03(22)

Baselines

TER 66.67(3) 21.43(13) 27.76(15)

BLEU 69.84(14) 21.43(12) 26.61(14)

METEOR 61.90(13) 24.21(17) 33.45(18)
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Table 6.5: Overall QATS results

Accuracy(Rank) MAE(Rank) MSE(Rank)

STS System 50.79(2) 26.59(2) 33.11(2)

Baselines

TER 38.10(13) 40.87(17) 46.29(20)

BLEU 37.30(18) 41.27(19) 45.01(17)

METEOR 61.90(13) 21.43(10) 31.25(14)
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6.2.6 Summary

Upon investigating the role of semantic textual similarity in the evaluation of auto-

matic text simplification methods, we presented a total of 36 features, organised in 3

sets, each geared towards a different phenomenon: simplicity, meaning preservation

and grammaticality. To address meaning preservation we use the features presented

in Section 3.4, which are semantic features used to measure semantic textual similar-

ity. The intuition is that more closely related sentences preserve the meaning better.

To address grammaticality we use MTQE baseline features, treating automatic text

simplification as a translation from “original” to “simple”. Finally, to measure sim-

plicity we use a number of readability ease metrics. We train a ML system which

uses these features on 505 automatically simplified sentences, annotated manually

for quality based on the three different criteria for quality.

On the Shared Task on Quality Assessment for Text Simplification (QATS), our

classification systems, which used all 36 proposed features, ranked second overall

among all participating systems and consistently outperformed the baseline for all

types of quality measures. Our approach reported especially promising results for

meaning preservation and simplicity, and for the overall quality measure, show-

ing the potential of our approach being used for automatic evaluation of various

ATS systems. The tool performed less impressively in determining grammaticality,

performing even more poorly than the baseline metrics Bleu, Ter and Meteor.

However, this is to be expected as our work focuses primarily on semantic similarity,

and more care would be needed to identify features that select for grammaticality

and fluency measures in the future. Furthermore, the features used to measure

grammaticality are MTQE features, that have been designed and perfected to work

in a translation context, and not in a simplification scenario, and that arguably have

little to do with grammaticality.
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6.3 Translation Memory Retrieval

A Translation Memory is a database of previously translated sentence pairs which

acts as an aid to translators by enabling them to reuse translations. Previously

translated segments can be retrieved from the database and reused or post-edited,

cutting down on translation time and cost. TMs have become commonplace in the

industry, and though methods for matching and retrieval can vary, they are still

based on Edit Distance measures.

Most translation memories use some form of edit distance, or Levenshtein, to

retrieve matches. Edit distance metrics show how similar two strings are by calcu-

lating the number of operations required to make one string identical to the other.

However, several researchers have looked into improving these techniques by incor-

porating semantic information into the matching and retrieval process (Planas and

Furuse, 2000; Macklovitch and Russell, 2000; Hodász and Pohl, 2005; Gupta et al.,

2016). This section presents our approach to using STS as a tool for Translation

Memory matching and retrieval. The rest of this chapter is organised as follows.

In Section 6.3.1 we present some previous work into using STS in TM matching

and retrieval. In Section 6.3.2 we detail our approach to using STS tools for TM

matching. In Section 6.3.3 we test our approach and compare the results to those

of a baseline edit distance. Finally, we present our conclusions in Section 6.3.4.

6.3.1 Background

In their publication, Planas and Furuse (2000) describe an algorithm for calculating

semantic similarity between two (monolingual) segments to retrieve the best trans-

lation memory match. This algorithm, while quite similar to edit distance, does not

allow for matches that require insertions. Furthermore, it looks at sentences as a

group of layered segments, with each layer encapsulating a different level of infor-
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mation for each sentence (such as surface form, Part of Speech, or lemma). This

algorithm proved to be extremely efficient in retrieving TM matches and returned

more usable results than a basic fuzzy match algorithm.

Gupta and Orăsan (2014) also argue for integrating semantic knowledge in the

form of paraphrasing information in matching and retrieval. They show that surface

form edit distance methods might miss matches that require little effort to post-

edit. An edit distance method will miss paraphrases such as “the period laid down

in article 4(3)” and “the duration set forth in article 4(3)”, two sentences which

have the same meaning but only a 57% Levenshtein score. The system they propose

incorporates paraphrasing with edit distance and obtains significant improvement in

translation memory retrieval and in translation. They use the paraphrase database

(PPDB (Ganitkevitch et al., 2013)) to augment a TM with paraphrase matches

for existing sentences. Instead of simply retrieving all matches (which the authors

found highly inefficient), the paraphrases are included according to a classification

system based on the number of words in the source and target sentences. They

tested their method on the 2013 release of the DGT:TM (Steinberger et al., 2006)

and achieved an improvement of 1.28% over the baseline systems (edit distance),

retrieving 127 more matches. They also observed an increase of over 4 Bleu points,

showing that their method improves matching as well as retrieval. In their follow-

up paper (Gupta et al., 2016), the authors improve on this method, using greedy

approximation techniques, and perform extensive human evaluation to measure the

impact on translation efficiency. The authors conclude that their enhancements

substantially improve TM matching and retrieval, with the ED match taking on

average 33% more keystrokes and 10% more time to post-edit than the enhanced

match. Like the previous work presented in this section, we attempt to improve

TM matching by using additional semantic information. Our approach uses the

STS tool described in Section 3.4 to retrieve matches and compares these validity

of these matches to those retrieved using an ED metric.
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6.3.2 Our Approach

We use the STS system described in Section 3.4, which was trained on the SICK

dataset described in Section 4.5.3 to determine a STS score between 1 and 5 for a

pair of sentences. We then generate our test set using a random selection of segments

from the DGT-TM corpus described in Section 4.4.3. We select 500 sentences to

be our test set. We also create a TM set from 5,000 randomly selected segments

from the rest of the corpus. This TM set is the pool from which we will find our

matches. There is no overlap between the sentences in the test set and the TM

pool. For each sentence in the test set, we extract 5,000 STS scores, one for each

segment in the TM pool. We then rank the sentences in the TM pool by these

scores and retrieve the segment with the highest score. We repeat this approach

for ED scores, and retrieve the segments from the TM pool with the highest ED

score. We also retrieve the French translations of these segments, as we intend to

use them for evaluation. After performing a test of these 500 sentences, we expand

the experiment to encompass 2,500 test sentences and a TM set of 10,000 sentences.

We denote the first experiment with 500 sentences as Test 1 and the expanded set

of 2,500 sentences as Test 2. As our STS system works best with English sentences,

we choose to use the EnglishtoFrench TM. The French sentences are only used for

evaluation.

6.3.3 Results

We perform two types of evaluation on our approach: an automatic evaluation using

Bleu and Meteor, and a manual analysis comparing the sentences selected by the

STS systems versus that of the baseline ED approach.

The automatic evaluation compares the French translation of the retrieved TM

match to the French translation of the original English sentence. These two sentences
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are evaluated using popular MT metrics Bleu and Meteor and are detailed in

Tables 6.6 and 6.7. The results of Test 1 show a marked improvement in Bleu and

a slight improvement in Meteor. However, the same results do not hold true for

the much larger Test 2.

Table 6.6: Automatic Evaluation Results - Bleu

Test 1 Test 2

STS 81.61 77.14

ED 77.32 81.34

Table 6.7: Automatic Evaluation Results - Meteor

Test 1 Test 2

STS 92.6 87.35

ED 91.5 84.55

As the automatic evaluation results are inconsistent depending on the chosen test

set, we perform a full manual evaluation on the data in order to gain more insight

into the usefulness of STS in MT retrieval. We present our retrieved matches to a

native speaker of English, alongside the original sentence and the ED match. The

annotator was asked to rank the sentences with the following labels:

0 If the two sentences are of the same quality.

1 If the ED retrieved match is a better match.

2 If the STS retrieved match is a better match.

The sentences are rated on informativeness. That is, they were rated on how closely

they preserved the original meaning of the sentence. We evaluate 1,000 sentences

this way. Table 6.8 shows the percentage of sentences that the annotator ranked as

better for each category. We also group these sentences by ED range, in order to get
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a better idea for when the STS system performs better than the ED matches. In the

overwhelming majority of cases, we find that the annotator found no difference be-

tween the quality of the ED and the STS match. That is, cases where the annotator

labelled “0” were still the overwhelming majority. In cases of high ED match, the

ED system seems to perform slightly better than the STS system, with 3.16% of the

ED sentences being the better match, as opposed to only 0.45% of the STS group.

When we control for lower ED matches, the STS system starts to perform slightly

better. In the 24-50 ED range, the annotator chose 16% of the STS sentences over

the ED sentences and only 6.2% of the ED sentences as better. Usually, segments

with such low ED matches are not considered useful to the posteditor.

Table 6.8: Manual Analysis - Percentage of sentences for which STS/ED retrieved

the better match

Range STS Matches ED Matches

75-100 0.45% 3.16%

50-75 2.94% 2.94%

25-50 16% 6.2%

A closer look at the data shows that sentences in the 75-100% ED range would

almost always retrieve identical sentences for both the ED and the STS match. In

the handful of cases where the match is not identical, the sentence retrieved through

ED is almost always the closer match. Example (1) shows such a case, where the

manual evaluation denotes that the ED match is a better choice.

(1) a. Source: This Decision shall enter into force on the date of its publication

in the Official Journal of the European Union .

b. ED Match [95]: This Decision shall enter into force on the day of its

publication in the Official Journal of the European Union .

c. STS Match [4.5]: This Decision shall enter into force on the date of

its adoption .
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Between 76-100% ED, there are no cases where the manual evaluator chose the STS

match over the ED match. The first such case happens at ED 75%, in Example

(2). Here the STS match clearly is closer in meaning, even though the ED match

is closer on the surface. In this case, the STS system manages to capture a better

match for the user.

(2) a. Source: Detailed provisions for performance requirements for EDS are

laid down in a separate Commission Decision .

b. ED Match [75]: Detailed provisions for a hand search are laid down

in a separate Commission Decision .

c. STS Match [4.29]: The performance requirements for an EDD are laid

down in Attachment 12-D of a separate Commission Decision .

Once exact or near exact matches become unavailable, however, the instances for

which the manual evaluator chose the STS match become more numerous. In Ex-

amples (3) and (4), the manual evaluator chose the STS match over the ED match.

(3) a. Source: The list of experts and the subject of the tasks shall be pub-

lished annually .

b. ED Match [35]: In the case of calves slaughtered before the age of 3

months , the retention period shall be 1 month .

c. STS Match [3.7]: The final accounts shall be published.

(4) a. Source: This was confirmed by the positive development of its economic

situation observed during the period considered .

b. ED Match [35]: The table below shows the development of car pro-

duction volumes in Europe in the period considered .

c. STS Match [3.0] The results of this rationalisation process within the

Community industry was thus reflected in the productivity which was
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rather stable during the period considered .

In examples (3) and (4), the ED match is very low (35). This score is too low to

produce a usable match. We can see that in cases like this, where no higher ED

match can be found, it would make more sense to use the STS match. This human

evaluation remains limited, however, as TM matches are more often used for post-

editing. Therefore, a stronger manual evaluation involving post-editing would be

required to give us a deeper insight into the usefulness of these matches.

6.3.4 Summary

In this section, we presented our approach to using STS to retrieve translation

memory segments. We compared our system’s performance to that of word-based

edit distance, and achieved comparable results. While our system did not outperform

the baseline in cases where the edit distance matches were high (35% or higher), it

did manage to perform better for segments where only low matches (under 35%) were

found. Our system faces a number of limitations, due to the limited availability of

suitable corpora and the time it takes to search large corpora for matching sentences.

Furthermore, we trained the STS system on the SICK dataset. This training data

was not in the same domain as the DGT-TM, which was used for testing. This out-

of-domain training data affected the accuracy of the STS system. However, more

suitable training data was not readily available.

6.4 Conclusion

In this chapter, we set out to find further applications for STS as a tool for evaluation,

and aimed to answer research question RQ3.

[RQ3] Can we expand the applications of Semantic Textual Similarity further:
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RQ3.1: in automatic evaluation of simplified text?

RQ3.2: in translation memory matching and retrieval?

We answered research question RQ3.1 through our submission to the QATS work-

shop, which called for participants to submit automatic evaluation metrics and qual-

ity estimation systems to evaluate the output of automatic text simplification sys-

tems. Our submission consisted of a machine learning system built on STS features.

As these features only capture similarity, we added MTQE features and readabil-

ity metrics to address fluency and simplicity. Our overall system came in third for

“Meaning Preservation”. However, the system did not perform as well for fluency

(Grammaticality in the shared task) and simplicity. This shows that while STS

features can adequately indicate whether or not a simplified sentence captures the

meaning of the original, it only covers one aspect of text simplification. The other

two aspects would require further evaluation.

In this chapter, we also addressed research question RQ3.2, this time with a

study that compares the STS tool to Edit Distance metrics in TM matching and

retrieval. Using the DGT–TM as our dataset, we extracted a set of testing segments

and a set to use as our TM. For each segment in our test set, we selected the most

semantically similar segment from the TM, and compared the result to the sentence

retrieved by ED. We performed both a manual and automatic evaluation, and found

that overall, STS is not as useful or as effective as basic ED. However, in some cases

where no useful ED match can be found, STS was able to retrieve a match.
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Chapter 7

Conclusions

This thesis presented our research into the applications of semantic textual simi-

larity in the evaluation of several NLP tasks, and detailed our findings. Chapter 2

presented background information and the state of the art for the main topics cov-

ered in our research. This included a detailed look at the history and developement

of semantic textual similarity and recognising textual entailment. Additionally, it

provided a look at the state of the art in machine translation evaluation, from MT

evaluation metrics to quality estimation methods. Chapter 3 presented several su-

pervised machine learning approaches to determining semantic textual similarity

that exploited existing language technology. Chapter 4 presented a novel approach

to using semantic textual similarity for machine translation evaluation. Chapter 5

tested our system in a real-world setting through a user study that presented pro-

fessional translators with MT suggestions and a traffic lights system that reflected

MTQE information about the usefulness of these suggestions. Chapter 6 presented

two more applications for STS, in the fields of automatic evaluation of text simpli-

fication, and in translation memory matching and retrieval.
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7.1 Research Questions Revisited

At the beginning of this thesis, we posed the following research questions:

RQ1 Can semantic textual similarity help accurately predict the quality of MT

output?

The question of whether semantic textual similarity can help accurately predict

the quality of MT output is researched in this thesis. This question is mostly

tackled in Chapter 4 with the outcome of our experiments that show that the

introduction of semantic information into the evaluation process can indeed

improve on the baseline. In this chapter we attempted to predict the quality

of a MT sentence by comparing it to a semantically similar sentence that has

been previously evaluated. We tested this approach on 3 different datasets,

including a dataset of our own design. Our results showed a small improvement

over the baseline when using the STS enhanced methods, with all three sets

of experiments showing minor improvements to the baseline when augmented

with STS features.

RQ2 To what extent does the use of quality estimation tools affect the efficiency of

the translation workflow?

This question is answered in Chapter 5, where we describe a user study that

investigates the integration of MTQE into the postediting workflow. We en-

list the help of professional translators and ask them to postedit or translate

sentences in a controlled environment. This is achieved by way of a traf-

fic light system, using the PET post-editing tool. We present the user with

three different categories of sentences: sentences to translate without a ma-

chine translation, sentences to post-edit without any MTQE suggestion and

sentences to either post-edit or translate depending on the MTQE suggestion.

Our findings show that not only does MTQE information improve the effi-
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ciency of translators in terms of time and effort, but that good and accurate

MTQE specifically cuts post-editing time and effort by up to 13%.

RQ3 Can we explore the applications of Semantic Textual Similarity further:

RQ3.1 in automatic evaluation of simplified text?

RQ3.2 in translation memory matching and retrieval?

We address both parts of the final research question in Chapter 6, which is

itself split into two major sections. The first section deals with the question

of automatic text simplification. We apply our STS tool to the problem of

determining the quality of automatic text simplification. We look at three as-

pects of quality: simplicity, meaning preservation (which relates to adequacy)

and grammaticality (which relates to fluency). As our STS tool can only de-

termine meaning preservation, we augment our tool with simplicity features

based on readability indices, and with MTQE features to determine gram-

maticality. The system performs well on meaning preservation, showing that

semantic textual similarity can be used to determine at least one aspect of

quality. The second part of the chapter investigates the use of STS in trans-

lation memory matching and retrieval, comparing it to a basic edit distance

tool. We use a translation memory (DGT-TM) to find the best matches using

both edit distance and the STS tool. We then choose the better match, using

both automatic and manual evaluation. Our evaluation shows that while edit

distance generally finds a better match, STS can be useful in finding a match

in cases where no good match (ED < 35) is available. However, the extent to

which these sentences are useful to a post-editor would require further manual

evaluation.
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7.2 Contributions

The main contributions of this thesis are as follows:

• Our literature survey covers both the state of the art in semantic textual

similarity and machine translation evaluation. It reviews the different methods

and contributions of the most prominent researchers in both fields.

• We add to the STS field by proposing our own machine learning approach to

determining semantic textual similarity

• We add to the MTQE field in two ways:

– By proposing a novel STS-enhanced MTQE method and extensively test-

ing its performance.

– By testing the impact of MTQE on post-editing efficiency in a real-world

setting

• We add to the field of automatic text simplification by proposing a method

with which to evaluate meaning preservation after simplification.

7.3 Future Work

While this thesis adequately answers the questions it posed in the introductory

chapter, there are several open questions and issues that may be investigated in the

future. Some of these questions are outlined below:

• Our STS tool is specifically designed to calculate the similarity between pairs

of sentences written in English. One possible avenue of future work would be

to modify the tool for other languages. Research into language-independent
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STS tools is still fairly limited, although its uses, as demonstrated in this

thesis, are quite vast.

• Furthering our experiments in Chapter 4, another interesting question is whether

the STS score carries over post-translation, and how much translation quality

affects the degree to which the STS score carries over. Such experiments would

require an annotated dataset with manually provided STS scores both before

and after machine translation.

• One important avenue of future work would be to test whether the results in

Chapter 5 can be replicated for other language pairs and domains. Our exper-

iments are limited to the English-Spanish language pair. Similar findings in

other language pairs experiments would demonstrate the need for accurate and

reliable MTQE, as well as the need to integrate it in professional translation

workflows to improve post-editing efficiency.

• Furthermore, the user study described in Chapter 5 only includes 4 profes-

sional translators and 260 segments to translate. While expanding the scope

of translators and segments would be quite challenging and expensive, it would

provide a more robust and conclusive picture of the effect of MTQE.
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de Souza, J. G. C., González-Rubio, J., Buck, C., Turchi, M., and Negri, M. (2014).

FBK-UPV-UEdin participation in the WMT14 quality estimation shared-task.

In Proceedings of the Ninth Workshop on Statistical Machine Translation, pages

322–328, Baltimore, Maryland, USA. Association for Computational Linguistics.

Doddington, G. (2002). Automatic Evaluation of Machine Translation Quality Us-

ing N-gram Co-occurrence Statistics. In Proceedings of the Second International

Conference on Human Language Technology Research, HLT ’02, pages 138–145,

San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Dolan, B., Quirk, C., and Brockett, C. (2004). Unsupervised construction of large

paraphrase corpora: Exploiting massively parallel news sources. In Proceedings

of the 20th international conference on Computational Linguistics, page 350. As-

sociation for Computational Linguistics.

Dzikovska, M. O., Bental, D., Moore, J. D., Steinhauser, N. B., Campbell, G. E.,

Farrow, E., and Callaway, C. B. (2010). Intelligent tutoring with natural language

155



support in the Beetle II system. In European Conference on Technology Enhanced

Learning, pages 620–625. Springer.
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Gupta, R., Orăsan, C., Zampieri, M., Vela, M., and Van Genabith, J. (2015b). Can

translation memories afford not to use paraphrasing? In Proceedings of the 18th

Annual Conference of the European Association for Machine Translation.
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