
Regular expressions

for translators and

interpreters

Constantin Orasan

Helped by: Diptesh Kanojia, Hadeel

Saadany, Leonardo Zilio, Shenbin Qian

28th March 2022 While waiting please open the following link
PollEv.com/corasan

https://pollev.com/corasan

Planned structure for today’s session

12:00 – 12:10

What are regular
expressions and why we

need them?

12:10 – 12:40

Basics of matching
expressions in text

12:40 – 13:05

Practical session 1 and
reporting back

13:05 – 13:10

Break

13:10 – 13:30

Cleaning and replacing text
based on regular

expressions

13:30 – 13:55

Practical session 2 and
reporting back

13:55 – 14:00

Wrapping up

Part 1: What
are regular
expressions?

What are regular expressions?

» “search-and-replace function on steroids”

» allow to assess whether a text contains a certain sequence of characters (matches the pattern)

» sometimes referred as wildcard characters

» Examples of use:

• Search for several words/forms of words (e.g. singular and plural) at once

• Search for different forms of the same word (e.g. London-based vs London based)

• Filter texts that fulfils certain conditions

• Clean a corpus of text built from the web

• Convert numerical expressions between language specific representations (e.g. 1.45 vs 1,45)

• Extensively used behind the scenes by CAT tools (e.g. recognise various expressions, split text into words)

Regular

expressions in

Trados

» Using “Advanced display

filters” we can filter

segments based on

conditions applied to

source and target

segments

Regular

expressions in

Trados

» Using “Advanced display

filters” we can filter

segments based on

conditions applied to

source and target

segments

Regular expressions in SketchEngine

Part 2:
Matching
expressions
in text

What are regular expressions

» a special sequence of characters that specifies a search pattern in text

» has a specialised syntax

» it is a “programming” language on its own (and there are several varieties of it)

» we will use the .NET flavour of regular expressions which is widely used (including by SDL

Trados)

» we will start by using https://regexr.com/ Notation: I will use … notation

to represent regular expressions
(e.g. text or

(.*)@(.*)\.com)

https://regexr.com/

Matching an exact string

» A string matches itself (i.e. simple

find string operation)

» The matching is case sensitive

butter vs Butter

» But some characters have special

meaning and they have to be

treated specially

Escaping special characters

» If we want to match \butter\ we

need to have \\butter\\

» Notice the \\. We need to escape

character \ using \

» If the characters have a special

meaning (meta-characters) we

need to escape them in order to

match them (e.g. \., \[, \(, etc.)

Meta-characters

» The power of regular expressions comes from meta-characters

» the meta-character . (dot) will match any single character

» to match the . (dot) character we need to escape it \.

Matching sets of characters

» the meta-characters [and] will indicate a set of characters to match

• can either enumerate the characters individually [abcd]

• can indicate a range [a-d]

• it will match only one character from the list/range

» meta-characters listed inside [and] lose their special nature and are treated as simple characters. e.g.

[ab.] matches a, b or .

» if we want to match - in the set we need to put it first to avoid declaring a range [a-c] vs [-ac]

» ^ will indicate which characters not to match if it appears first after [e.g. [^a-c] will match anything but

a, b or c.

» if we want to match a string which does not contain - we have [^-]

Examples

» ABCD matches the string ABCD , but not AB1D

» AB.D matches both ABCD and AB1D because . matches any character.

» AB[A-D]D matches the following strings ABAD , ABBD , ABCD , ABDD but nothing else.

» 1.1 matches 101, 111, 1,1, 1a1, …

» summari[sz]e matches both summarise and summarize

» 20[01][0-9] matches years between 2000 and 2019

» Write in pollev.com/corasan the regular expression which matches both gray and grey

Repeating sequences

»* repeats an expression 0 or unspecified number of times e.g. a* matches a

sequence of 0 or many letters a

»+ repeats an expression 1 or more times e.g. a+ matches a sequence of 1 or

many letters a

»? repeats an expression 0 or 1 times. Indicates something optional. e.g. home-

?brew matches either homebrew or home-brew.

»{n} where n is a number which indicates that an expression appears exactly n

times. e.g. a{3} matches aaa

»{m,n} where m and n are integer repeats an expression at least m times and at

most n times. If n is missing it is considered unlimited.

| (OR operator)

» | is the or operator: defines alternative options

» It has very low priority, so you may need to use parenthesis to adjust the priority of the operations. For

example if we want to match both organization and organisation we can have organi(s|z)ation.

Creating groups

» Groups are marked by (and)

» Groups are used to

• Group things together

• Retrieve specific parts of the matched string

• Set the priority of matching

» It is possible to refer to a group by using \1, \2. Note: counting

starts from 1 and you need to count the number of (opened.

Boundaries

» ^ matches the beginning of the line

» $ matches the end of the line

» \b word boundary, where words are defined as a sequence of alphanumeric characters. It is a zero-with

assertion (i.e. no actual character is matched)

» \B negation of \b: the current position is not a word boundary

Practical session 1

» Match both color and colour. How can you match both capitalised and lower-case words?

» What kind of words the following match:

• ^[0-9]+\.[0-9]+$

• [A-Z]+\$$

• ^[0-9]{4}$

• ^[0-9]+-[a-z]{3,5}$

• ^[a-z]{5,}-[a-z]{2,3}-[a-z]{1,6}$

• (ed|ing)$

» Match time: 1:00 AM, 2:34PM,

» More difficult match a time after 1pm when expressed using a 24h clock (e.g. a time after 12:00)

Part 2:
Transforming and
cleaning data
using regular
expressions

Notepad++ for regular expressions

» We will use Notepad++ to clean data

» Notepad++ is a free text editor that is very powerful (https://notepad-plus-plus.org/)

» It supports regular

expressions very well

https://notepad-plus-plus.org/

Correct smart quotes

» We have a document which contains smart quotes “”. How can we replace them with

quotation marks "?

Translate blt-X

» We need to translate blt-X (where X is a digit) in URIs

Uri: https://www.anchorbutter.co.uk/globalassets/images/food-ideas/blt-2.jpg

» The assumption is that blt → ssr, but we also need to add –ro after the number (slightly artificial

example, but not impossible), so simple replace of blt is not possible

» We match blt-([0-9]), where ([0-9]) is

a group

» Replace it with ssr-\1-ro, where \1 is

reference to group 1 (i.e. copies the text in

group 1)

Changing capitalisation in glossaries

» We have a glossary which contains terms and abbreviations. How we can convert all the terms

to lower case, but not the abbreviations

E.g.

Translation memory

MT

term database

HTML

Computer-aided translation

» Match ^([A-Z])([a-z].*)$

» Replace with \l\1\2 (\l means

convert the next character to lowercase

» The Match case option needs to be

selected

Cleaning HTML

» Am HTML tag is marked by <> and used by browsers to control how a text is displayed. E.g.

This is an emphasised word.

» At times we need to clean tags from our texts (e.g. corpus that was built from the web)

» The pattern we should use is <.*?>. The .*? Indicates a non-greedy matching

Regular

expressions in

Microsoft Word

Example how to use a regular expression in Word to transform

how numbers are represented.

Read more about regular expressions in Word at

http://www.gmayor.com/replace_using_wildcards.htm

http://www.gmayor.com/replace_using_wildcards.htm

Practical session 2

1. You are given a date in the format dd/mm/YYyy convert it to yy-mm-dd (e.g. 11/03/2022 → 22-

03-11)

2. Convert numbers from the format XX,XXX.XX to XX.XXX,XX

3. We have a file with a list of terms in English where each term is indicated by the tag <en>.

The task is to prepare the file to be translated by duplicating the text, but surrounded by the

code of the target language (but not translate the text)

E.g. <en>translation memory</en> →

<en>translation memory</en> <ro>translation memory</ro>

For this activity you can use either Notepad++ or Word.

Further reading/activities

» Language independent tutorial about regular expressions

https://github.com/zeeshanu/learn-regex

»The fantastic world of nerdy regex fun: https://regexcrossword.com/

»Regex Golf: https://alf.nu/RegexGolf?world=regex&level=r00

»Regular expressions in Notepad++ https://npp-user-

manual.org/docs/searching/#regular-expressions

»What’s that ^.?$|^(..+?)\1+$: https://iluxonchik.github.io/regular-

expression-check-if-number-is-prime/

https://github.com/zeeshanu/learn-regex
https://regexcrossword.com/
https://alf.nu/RegexGolf?world=regex&level=r00
https://npp-user-manual.org/docs/searching/#regular-expressions
https://iluxonchik.github.io/regular-expression-check-if-number-is-prime/

Thank you

» Get in touch if you have questions:

C.Orasan@surrey.ac.uk

» Slides will be available on

https://dinel.org.uk/teaching/worksho

p-on-regular-expressions/

mailto:C.Orasan@surrey.ac.uk
https://dinel.org.uk/teaching/workshop-on-regular-expressions/

